好湿?好紧?好多水好爽自慰,久久久噜久噜久久综合,成人做爰A片免费看黄冈,机机对机机30分钟无遮挡

主頁 > 知識庫 > pytorch中的numel函數用法說明

pytorch中的numel函數用法說明

熱門標簽:騰訊外呼線路 公司電話機器人 陜西金融外呼系統 哈爾濱ai外呼系統定制 唐山智能外呼系統一般多少錢 激戰2地圖標注 海南400電話如何申請 白銀外呼系統 廣告地圖標注app

獲取tensor中一共包含多少個元素

import torch
x = torch.randn(3,3)
print("number elements of x is ",x.numel())
y = torch.randn(3,10,5)
print("number elements of y is ",y.numel())

輸出:

number elements of x is 9

number elements of y is 150

27和150分別位x和y中各有多少個元素或變量

補充:pytorch獲取張量元素個數numel()的用法

numel就是"number of elements"的簡寫。

numel()可以直接返回int類型的元素個數

import torch 
a = torch.randn(1, 2, 3, 4)
b = a.numel()
print(type(b)) # int
print(b) # 24

通過numel()函數,我們可以迅速查看一個張量到底又多少元素。

補充:pytorch 卷積結構和numel()函數

看代碼吧~

from torch import nn 
class CNN(nn.Module):
    def __init__(self, num_channels=1, d=56, s=12, m=4):
        super(CNN, self).__init__()
        self.first_part = nn.Sequential(
            nn.Conv2d(num_channels, d, kernel_size=3, padding=5//2),
            nn.Conv2d(num_channels, d, kernel_size=(1,3), padding=5//2),
            nn.Conv2d(num_channels, d, kernel_size=(3,1), padding=5//2),
            nn.PReLU(d)
        )
 
    def forward(self, x):
        x = self.first_part(x)
        return x
 
model = CNN()
for m in model.first_part:
    if isinstance(m, nn.Conv2d):
        # print('m:',m.weight.data)
        print('m:',m.weight.data[0])
        print('m:',m.weight.data[0][0])
        print('m:',m.weight.data.numel()) #numel() 計算矩陣中元素的個數
 
結果:
m: tensor([[[-0.2822,  0.0128, -0.0244],
         [-0.2329,  0.1037,  0.2262],
         [ 0.2845, -0.3094,  0.1443]]]) #卷積核大小為3x3
m: tensor([[-0.2822,  0.0128, -0.0244],
        [-0.2329,  0.1037,  0.2262],
        [ 0.2845, -0.3094,  0.1443]]) #卷積核大小為3x3
m: 504   # = 56 x (3 x 3)  輸出通道數為56,卷積核大小為3x3
m: tensor([-0.0335,  0.2945,  0.2512,  0.2770,  0.2071,  0.1133, -0.1883,  0.2738,
         0.0805,  0.1339, -0.3000, -0.1911, -0.1760,  0.2855, -0.0234, -0.0843,
         0.1815,  0.2357,  0.2758,  0.2689, -0.2477, -0.2528, -0.1447, -0.0903,
         0.1870,  0.0945, -0.2786, -0.0419,  0.1577, -0.3100, -0.1335, -0.3162,
        -0.1570,  0.3080,  0.0951,  0.1953,  0.1814, -0.1936,  0.1466, -0.2911,
        -0.1286,  0.3024,  0.1143, -0.0726, -0.2694, -0.3230,  0.2031, -0.2963,
         0.2965,  0.2525, -0.2674,  0.0564, -0.3277,  0.2185, -0.0476,  0.0558]) bias偏置的值
m: tensor([[[ 0.5747, -0.3421,  0.2847]]]) 卷積核大小為1x3
m: tensor([[ 0.5747, -0.3421,  0.2847]]) 卷積核大小為1x3
m: 168 # = 56 x (1 x 3) 輸出通道數為56,卷積核大小為1x3
m: tensor([ 0.5328, -0.5711, -0.1945,  0.2844,  0.2012, -0.0084,  0.4834, -0.2020,
        -0.0941,  0.4683, -0.2386,  0.2781, -0.1812, -0.2990, -0.4652,  0.1228,
        -0.0627,  0.3112, -0.2700,  0.0825,  0.4345, -0.0373, -0.3220, -0.5038,
        -0.3166, -0.3823,  0.3947, -0.3232,  0.1028,  0.2378,  0.4589,  0.1675,
        -0.3112, -0.0905, -0.0705,  0.2763,  0.5433,  0.2768, -0.3804,  0.4855,
        -0.4880, -0.4555,  0.4143,  0.5474,  0.3305, -0.0381,  0.2483,  0.5133,
        -0.3978,  0.0407,  0.2351,  0.1910, -0.5385,  0.1340,  0.1811, -0.3008]) bias偏置的值
m: tensor([[[0.0184],
         [0.0981],
         [0.1894]]]) 卷積核大小為3x1
m: tensor([[0.0184],
        [0.0981],
        [0.1894]]) 卷積核大小為3x1
m: 168 # = 56 x (3 x 1) 輸出通道數為56,卷積核大小為3x1
m: tensor([-0.2951, -0.4475,  0.1301,  0.4747, -0.0512,  0.2190,  0.3533, -0.1158,
         0.2237, -0.1407, -0.4756,  0.1637, -0.4555, -0.2157,  0.0577, -0.3366,
        -0.3252,  0.2807,  0.1660,  0.2949, -0.2886, -0.5216,  0.1665,  0.2193,
         0.2038, -0.1357,  0.2626,  0.2036,  0.3255,  0.2756,  0.1283, -0.4909,
         0.5737, -0.4322, -0.4930, -0.0846,  0.2158,  0.5565,  0.3751, -0.3775,
        -0.5096, -0.4520,  0.2246, -0.5367,  0.5531,  0.3372, -0.5593, -0.2780,
        -0.5453, -0.2863,  0.5712, -0.2882,  0.4788,  0.3222, -0.4846,  0.2170]) bias偏置的值
  
'''初始化后'''
class CNN(nn.Module):
    def __init__(self, num_channels=1, d=56, s=12, m=4):
        super(CNN, self).__init__()
        self.first_part = nn.Sequential(
            nn.Conv2d(num_channels, d, kernel_size=3, padding=5//2),
            nn.Conv2d(num_channels, d, kernel_size=(1,3), padding=5//2),
            nn.Conv2d(num_channels, d, kernel_size=(3,1), padding=5//2),
            nn.PReLU(d)
        )
        self._initialize_weights()
    def _initialize_weights(self):
        for m in self.first_part:
            if isinstance(m, nn.Conv2d):
                nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))
                nn.init.zeros_(m.bias.data)
 
    def forward(self, x):
        x = self.first_part(x)
        return x
 
model = CNN()
for m in model.first_part:
    if isinstance(m, nn.Conv2d):
        # print('m:',m.weight.data)
        print('m:',m.weight.data[0])
        print('m:',m.weight.data[0][0])
        print('m:',m.weight.data.numel()) #numel() 計算矩陣中元素的個數
 
結果:
m: tensor([[[-0.0284, -0.0585,  0.0271],
         [ 0.0125,  0.0554,  0.0511],
         [-0.0106,  0.0574, -0.0053]]])
m: tensor([[-0.0284, -0.0585,  0.0271],
        [ 0.0125,  0.0554,  0.0511],
        [-0.0106,  0.0574, -0.0053]])
m: 504
m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0.])
m: tensor([[[ 0.0059,  0.0465, -0.0725]]])
m: tensor([[ 0.0059,  0.0465, -0.0725]])
m: 168
m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0.])
m: tensor([[[ 0.0599],
         [-0.1330],
         [ 0.2456]]])
m: tensor([[ 0.0599],
        [-0.1330],
        [ 0.2456]])
m: 168
m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0.])
 

以上為個人經驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。

您可能感興趣的文章:
  • Pytorch Tensor基本數學運算詳解
  • 詳解PyTorch中Tensor的高階操作
  • PyTorch中Tensor的數據類型和運算的使用
  • Pytorch之contiguous的用法

標簽:上海 益陽 鷹潭 四川 惠州 黑龍江 常德 黔西

巨人網絡通訊聲明:本文標題《pytorch中的numel函數用法說明》,本文關鍵詞  pytorch,中的,numel,函數,用法,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《pytorch中的numel函數用法說明》相關的同類信息!
  • 本頁收集關于pytorch中的numel函數用法說明的相關信息資訊供網民參考!
  • 推薦文章
    主站蜘蛛池模板: 久久93精品国产91久久综合| 又黄又爽又成人免费视频| 一区二区三区精品国产| 女人精69xxxxxx| 亚洲大但人文艺术| 天天天天天天操| 一本一道久久综合狠狠老精东影业| 黄色视屏在线免费观看| 汉服女装齐胸襦裙被c视频| 男女又爽?又黄?免费怀孕| 欧美精品一区二区三区视频在线| 免费一级黄色录像影片| 日本精品一区二区三区在线视频| 成人黄色一级片| 积积对积积的桶免费出水| 啊~cao死你个小sao货| 极品 女神校花 露脸91| 娇妻被别人调教征服| 精品久久久久久免费影院| 榴莲app免费下载网址进入| 99精品视频99| 佳佳伦影院理片| 男男H开荤粗肉H文1v1| 慢慢进了张丽老师身体| 新白洁少妇第1一178章| 精品AV秘?一区二区三区| HEZYO国产精品无码视频明星| 午夜老湿影院| 我和小公交车激情| 亚洲第一伊人| 九九偷拍各类wc女厕嘘嘘偷窥| 国产?刺激?高潮?小说| 亚洲永久精品一区二区三区| 国产在线成人一区二区| 久久九九色| 聊斋倩女传| 美女被?狂揉大胸视频| 福泉市| 樱花影院高清电影好看的电视剧| 学生与老师高潮毛片| 日日拍夜夜嗷嗷叫国产|