好湿?好紧?好多水好爽自慰,久久久噜久噜久久综合,成人做爰A片免费看黄冈,机机对机机30分钟无遮挡

主頁 > 知識庫 > pyspark創建DataFrame的幾種方法

pyspark創建DataFrame的幾種方法

熱門標簽:唐山智能外呼系統一般多少錢 哈爾濱ai外呼系統定制 海南400電話如何申請 激戰2地圖標注 白銀外呼系統 騰訊外呼線路 公司電話機器人 陜西金融外呼系統 廣告地圖標注app

pyspark創建DataFrame

為了便于操作,使用pyspark時我們通常將數據轉為DataFrame的形式來完成清洗和分析動作。

RDD和DataFrame

在上一篇pyspark基本操作有提到RDD也是spark中的操作的分布式數據對象。

這里簡單看一下RDD和DataFrame的類型。

print(type(rdd))  # class 'pyspark.rdd.RDD'>
print(type(df))   # class 'pyspark.sql.dataframe.DataFrame'>

翻閱了一下源碼的定義,可以看到他們之間并沒有繼承關系。

class RDD(object):

    """
    A Resilient Distributed Dataset (RDD), the basic abstraction in Spark.
    Represents an immutable, partitioned collection of elements that can be
    operated on in parallel.
    """

class DataFrame(object):
    """A distributed collection of data grouped into named columns.

    A :class:`DataFrame` is equivalent to a relational table in Spark SQL,
    and can be created using various functions in :class:`SparkSession`::
 ...
    """

RDD是一種彈性分布式數據集,Spark中的基本抽象。表示一種不可變的、分區儲存的集合,可以進行并行操作。
DataFrame是一種以列對數據進行分組表達的分布式集合, DataFrame等同于Spark SQL中的關系表。相同點是,他們都是為了支持分布式計算而設計。

但是RDD只是元素的集合,但是DataFrame以列進行分組,類似于MySQL的表或pandas中的DataFrame。

實際工作中,我們用的更多的還是DataFrame。

使用二元組創建DataFrame

嘗試第一種情形發現,僅僅傳入二元組,結果是沒有列名稱的。
于是我們嘗試第二種,同時傳入二元組和列名稱。

a = [('Alice', 1)]
output = spark.createDataFrame(a).collect()
print(output)
# [Row(_1='Alice', _2=1)]

output = spark.createDataFrame(a, ['name', 'age']).collect()
print(output)
# [Row(name='Alice', age=1)]

這里collect()是按行展示數據表,也可以使用show()對數據表進行展示。

spark.createDataFrame(a).show()
# +-----+---+
# |   _1| _2|
# +-----+---+
# |Alice|  1|
# +-----+---+

spark.createDataFrame(a, ['name', 'age']).show()
# +-----+---+
# | name|age|
# +-----+---+
# |Alice|  1|
# +-----+---+

使用鍵值對創建DataFrame

d = [{'name': 'Alice', 'age': 1}]
output = spark.createDataFrame(d).collect()
print(output)

# [Row(age=1, name='Alice')]

使用rdd創建DataFrame

a = [('Alice', 1)]
rdd = sc.parallelize(a)
output = spark.createDataFrame(rdd).collect()
print(output)
output = spark.createDataFrame(rdd, ["name", "age"]).collect()
print(output)

# [Row(_1='Alice', _2=1)]
# [Row(name='Alice', age=1)]

基于rdd和ROW創建DataFrame

from pyspark.sql import Row


a = [('Alice', 1)]
rdd = sc.parallelize(a)
Person = Row("name", "age")
person = rdd.map(lambda r: Person(*r))
output = spark.createDataFrame(person).collect()
print(output)

# [Row(name='Alice', age=1)]

基于rdd和StructType創建DataFrame

from pyspark.sql.types import *

a = [('Alice', 1)]
rdd = sc.parallelize(a)
schema = StructType(
    [
        StructField("name", StringType(), True),
        StructField("age", IntegerType(), True)
    ]
)
output = spark.createDataFrame(rdd, schema).collect()
print(output)

# [Row(name='Alice', age=1)]

基于pandas DataFrame創建pyspark DataFrame

df.toPandas()可以把pyspark DataFrame轉換為pandas DataFrame。

df = spark.createDataFrame(rdd, ['name', 'age'])
print(df)  # DataFrame[name: string, age: bigint]

print(type(df.toPandas()))  # class 'pandas.core.frame.DataFrame'>

# 傳入pandas DataFrame
output = spark.createDataFrame(df.toPandas()).collect()
print(output)

# [Row(name='Alice', age=1)]

創建有序的DataFrame

output = spark.range(1, 7, 2).collect()
print(output)
# [Row(id=1), Row(id=3), Row(id=5)]

output = spark.range(3).collect()
print(output)
# [Row(id=0), Row(id=1), Row(id=2)]

通過臨時表得到DataFrame

spark.registerDataFrameAsTable(df, "table1")
df2 = spark.table("table1")
b = df.collect() == df2.collect()
print(b)
# True

配置DataFrame和臨時表

創建DataFrame時指定列類型

在createDataFrame中可以指定列類型,只保留滿足數據類型的列,如果沒有滿足的列,會拋出錯誤。

a = [('Alice', 1)]
rdd = sc.parallelize(a)

# 指定類型于預期數據對應時,正常創建
output = spark.createDataFrame(rdd, "a: string, b: int").collect()
print(output)  # [Row(a='Alice', b=1)]
rdd = rdd.map(lambda row: row[1])
print(rdd)  # PythonRDD[7] at RDD at PythonRDD.scala:53

# 只有int類型對應上,過濾掉其他列。
output = spark.createDataFrame(rdd, "int").collect()
print(output)   # [Row(value=1)]

# 沒有列能對應上,會拋出錯誤。
output = spark.createDataFrame(rdd, "boolean").collect()
# TypeError: field value: BooleanType can not accept object 1 in type class 'int'>

注冊DataFrame為臨時表

spark.registerDataFrameAsTable(df, "table1")
spark.dropTempTable("table1")

獲取和修改配置

print(spark.getConf("spark.sql.shuffle.partitions"))  # 200
print(spark.getConf("spark.sql.shuffle.partitions", u"10"))  # 10
print(spark.setConf("spark.sql.shuffle.partitions", u"50"))  # None
print(spark.getConf("spark.sql.shuffle.partitions", u"10"))  # 50

注冊自定義函數

spark.registerFunction("stringLengthString", lambda x: len(x))
output = spark.sql("SELECT stringLengthString('test')").collect()
print(output)
# [Row(stringLengthString(test)='4')]

spark.registerFunction("stringLengthString", lambda x: len(x), IntegerType())
output = spark.sql("SELECT stringLengthString('test')").collect()
print(output)
# [Row(stringLengthString(test)=4)]

spark.udf.register("stringLengthInt", lambda x: len(x), IntegerType())
output = spark.sql("SELECT stringLengthInt('test')").collect()
print(output)
# [Row(stringLengthInt(test)=4)]

查看臨時表列表

可以查看所有臨時表名稱和對象。

spark.registerDataFrameAsTable(df, "table1")
print(spark.tableNames())  # ['table1']
print(spark.tables())  # DataFrame[database: string, tableName: string, isTemporary: boolean]
print("table1" in spark.tableNames())  # True
print("table1" in spark.tableNames("default"))  # True

spark.registerDataFrameAsTable(df, "table1")
df2 = spark.tables()
df2.filter("tableName = 'table1'").first()
print(df2)  # DataFrame[database: string, tableName: string, isTemporary: boolean]

從其他數據源創建DataFrame

MySQL

前提是需要下載jar包。
Mysql-connector-java.jar

from pyspark import SparkContext
from pyspark.sql import SQLContext
import pyspark.sql.functions as F


sc = SparkContext("local", appName="mysqltest")
sqlContext = SQLContext(sc)
df = sqlContext.read.format("jdbc").options(
    url="jdbc:mysql://localhost:3306/mydata?user=rootpassword=mysql"
        "useUnicode=truecharacterEncoding=utf-8useJDBCCompliantTimezoneShift=true"
        "useLegacyDatetimeCode=falseserverTimezone=UTC ", dbtable="detail_data").load()
df.show(n=5)
sc.stop()

參考

RDD和DataFrame的區別
spark官方文檔 翻譯 之pyspark.sql.SQLContext

到此這篇關于pyspark創建DataFrame的幾種方法的文章就介紹到這了,更多相關pyspark創建DataFrame 內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • pyspark 讀取csv文件創建DataFrame的兩種方法

標簽:黔西 鷹潭 黑龍江 四川 常德 益陽 惠州 上海

巨人網絡通訊聲明:本文標題《pyspark創建DataFrame的幾種方法》,本文關鍵詞  pyspark,創建,DataFrame,的,幾種,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《pyspark創建DataFrame的幾種方法》相關的同類信息!
  • 本頁收集關于pyspark創建DataFrame的幾種方法的相關信息資訊供網民參考!
  • 推薦文章
    主站蜘蛛池模板: 操美女骚b| 人人妻人人澡人人爽人人欧美一区| 美女MM131爽爽爽免费图片| 狠狠干精品| 欧美激情无码aV毛片| 色婷婷日韩精品一区二区三区| 免费污视频在线看| 孽欲追击| 扒开jk美女?狂揉?视频| 国产精品久久久久久52v| 亚洲精品在线第一页| 中国一级黄色毛片| 捏胸吻胸添奶头gif动态图| 25部又黄又刺激的小说| 国产午夜精品自在自线之la| 男生和女生插插插| 国产精品久久久久久久人人看| 国产精品igao视频网网址男男 | 各种姿势的纯H小说| 東京熱大亂交在线AV一区二区| freeⅹxx69性欧美按摩| 亚洲欧美一区二区三区孕妇| 欧美性福利| 欧美freesex极品少妇| x8x8x8女性性爽免费视频在线观看 | 一级毛片免费全部播放| 成人精品一区二区三区尤物仙踪林| 巨爆乳肉感一区三区三区在线观看| 嗯…啊!轻一点| 翘臀啪啪| 公交车高h| 性XXXXfreeXXXX脱垂| 91丨国产丨精品丨丝袜| 欧美日韩永久久一区二区三区| 亚洲中文精品久久久久久图片区| 一级a一级a爰片免费视频| 日批在线观看视频| 国产边打电话边被躁视频| 日韩伦理亚洲欧美在线一区| 失禁play哄尿bl把尿h| 巨胸喷奶水WWWW贱多|