在我們想要對不同變量進行判斷的時候,會分析其中的之間的聯系。這種理念同樣也被用在實例生活中,最常見到的是做一個地理的熱力圖。很多人對畫熱力圖的方法不是很清楚,我們可以先裝好相關的工具,了解一些使用參數,然后在實例中進行畫熱力圖的實例體驗,下面就來看看具體的方法吧。
1.導入相關的packages
import seaborn as sns
%matplotlib inline
sns.set(font_scale=1.5)
2.參數
vmax:設置顏色帶的最大值
vmin:設置顏色帶的最小值
cmap:設置顏色帶的色系
center:設置顏色帶的分界線
annot:是否顯示數值注釋
fmt:format的縮寫,設置數值的格式化形式
linewidths:控制每個小方格之間的間距
linecolor:控制分割線的顏色
cbar_kws:關于顏色帶的設置
mask:傳入布爾型矩陣,若為矩陣內為True,則熱力圖相應的位置的數據將會被屏蔽掉(常用在繪制相關系數矩陣圖)
3.實例
用Python生成heatmap比較簡單,導入googlmap然后把經緯度plot在地圖上就可以了。最后把heatmap生成為一個html文件,可以放大和縮小。
import gmplot # plot the locations on google map
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv())
import matplotlib.pyplot as plt # data visualization
import seaborn as sns # data visualization
df = pd.read_csv("data.csv")
df = pd.DataFrame(df)
df_td = pd.read_csv("datacopy.csv")
df_td = pd.DataFrame(df_td)
# print df.dtypes
print (df.shape)
print (df_td.shape)
def plot_heat_map(data, number):
latitude_array = data['INTPTLAT'].values
latitude_list = latitude_array.tolist()
print(latitude_list[0])
Longitude_array = data['INTPTLONG'].values
longitude_list = Longitude_array.tolist()
print(longitude_list[0])
# Initialize the map to the first location in the list
gmap = gmplot.GoogleMapPlotter(latitude_list[0], longitude_list[0], 10)
# gmap.scatter(latitude_list, longitude_list, edge_width=10)
gmap.heatmap(latitude_list, longitude_list)
# Write the map in an HTML file
# gmap.draw('Paths_map.html')
gmap.draw('{}_Paths_map.html'.format(number))
plot_heat_map(df,'4')
內容擴展:
實例擴展1
# -*- coding: utf-8 -*-
from pyheatmap.heatmap import HeatMap
import numpy as np
N = 10000
X = np.random.rand(N) * 255 # [0, 255]
Y = np.random.rand(N) * 255
data = []
for i in range(N):
tmp = [int(X[i]), int(Y[i]), 1]
data.append(tmp)
heat = HeatMap(data)
heat.clickmap(save_as="1.png") #點擊圖
heat.heatmap(save_as="2.png") #熱圖
實例擴展2
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import LogNorm
import numpy as np
x, y = np.random.rand(10), np.random.rand(10)
z = (np.random.rand(9000000)+np.linspace(0,1, 9000000)).reshape(3000, 3000)
plt.imshow(z+10, extent=(np.amin(x), np.amax(x), np.amin(y), np.amax(y)),
cmap=cm.hot, norm=LogNorm())
plt.colorbar()
plt.show()
以上就是python熱力圖實現簡單方法的詳細內容,更多關于python熱力圖的原理實現的資料請關注腳本之家其它相關文章!
您可能感興趣的文章:- python 繪制場景熱力圖的示例
- Python如何繪制日歷圖和熱力圖
- Python數據相關系數矩陣和熱力圖輕松實現教程
- python實現輸入的數據在地圖上生成熱力圖效果