好湿?好紧?好多水好爽自慰,久久久噜久噜久久综合,成人做爰A片免费看黄冈,机机对机机30分钟无遮挡

主頁 > 知識庫 > pytorch 實現變分自動編碼器的操作

pytorch 實現變分自動編碼器的操作

熱門標簽:電銷機器人的風險 應電話機器人打電話違法嗎 開封語音外呼系統代理商 手機網頁嵌入地圖標注位置 400電話辦理哪種 河北防封卡電銷卡 天津電話機器人公司 地圖標注線上如何操作 開封自動外呼系統怎么收費

本來以為自動編碼器是很簡單的東西,但是也是看了好多資料仍然不太懂它的原理。先把代碼記錄下來,有時間好好研究。

這個例子是用MNIST數據集生成為例子

# -*- coding: utf-8 -*-
"""
Created on Fri Oct 12 11:42:19 2018
@author: www
""" 
import os 
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader
 
from torchvision.datasets import MNIST
from torchvision import transforms as tfs
from torchvision.utils import save_image 
im_tfs = tfs.Compose([
    tfs.ToTensor(),
    tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # 標準化
])
 
train_set = MNIST('E:\data', transform=im_tfs)
train_data = DataLoader(train_set, batch_size=128, shuffle=True)
 
class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
 
        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20) # mean
        self.fc22 = nn.Linear(400, 20) # var
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)
 
    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)
 
    def reparametrize(self, mu, logvar):
        std = logvar.mul(0.5).exp_()
        eps = torch.FloatTensor(std.size()).normal_()
        if torch.cuda.is_available():
            eps = Variable(eps.cuda())
        else:
            eps = Variable(eps)
        return eps.mul(std).add_(mu)
 
    def decode(self, z):
        h3 = F.relu(self.fc3(z))
        return F.tanh(self.fc4(h3))
 
    def forward(self, x):
        mu, logvar = self.encode(x) # 編碼
        z = self.reparametrize(mu, logvar) # 重新參數化成正態分布
        return self.decode(z), mu, logvar # 解碼,同時輸出均值方差 
 
net = VAE() # 實例化網絡
if torch.cuda.is_available():
    net = net.cuda()
    
x, _ = train_set[0]
x = x.view(x.shape[0], -1)
if torch.cuda.is_available():
    x = x.cuda()
x = Variable(x)
_, mu, var = net(x) 
print(mu)
 
#可以看到,對于輸入,網絡可以輸出隱含變量的均值和方差,這里的均值方差還沒有訓練
 
#下面開始訓練 
reconstruction_function = nn.MSELoss(size_average=False) 
def loss_function(recon_x, x, mu, logvar):
    """
    recon_x: generating images
    x: origin images
    mu: latent mean
    logvar: latent log variance
    """
    MSE = reconstruction_function(recon_x, x)
    # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
    KLD = torch.sum(KLD_element).mul_(-0.5)
    # KL divergence
    return MSE + KLD 
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
 
def to_img(x):
    '''
    定義一個函數將最后的結果轉換回圖片
    '''
    x = 0.5 * (x + 1.)
    x = x.clamp(0, 1)
    x = x.view(x.shape[0], 1, 28, 28)
    return x
 
for e in range(100):
    for im, _ in train_data:
        im = im.view(im.shape[0], -1)
        im = Variable(im)
        if torch.cuda.is_available():
            im = im.cuda()
        recon_im, mu, logvar = net(im)
        loss = loss_function(recon_im, im, mu, logvar) / im.shape[0] # 將 loss 平均
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
 
    if (e + 1) % 20 == 0:
        print('epoch: {}, Loss: {:.4f}'.format(e + 1, loss.item()))
        save = to_img(recon_im.cpu().data)
        if not os.path.exists('./vae_img'):
            os.mkdir('./vae_img')
        save_image(save, './vae_img/image_{}.png'.format(e + 1))                    
          

補充:PyTorch 深度學習快速入門——變分自動編碼器

變分編碼器是自動編碼器的升級版本,其結構跟自動編碼器是類似的,也由編碼器和解碼器構成。

回憶一下,自動編碼器有個問題,就是并不能任意生成圖片,因為我們沒有辦法自己去構造隱藏向量,需要通過一張圖片輸入編碼我們才知道得到的隱含向量是什么,這時我們就可以通過變分自動編碼器來解決這個問題。

其實原理特別簡單,只需要在編碼過程給它增加一些限制,迫使其生成的隱含向量能夠粗略的遵循一個標準正態分布,這就是其與一般的自動編碼器最大的不同。

這樣我們生成一張新圖片就很簡單了,我們只需要給它一個標準正態分布的隨機隱含向量,這樣通過解碼器就能夠生成我們想要的圖片,而不需要給它一張原始圖片先編碼。

一般來講,我們通過 encoder 得到的隱含向量并不是一個標準的正態分布,為了衡量兩種分布的相似程度,我們使用 KL divergence,利用其來表示隱含向量與標準正態分布之間差異的 loss,另外一個 loss 仍然使用生成圖片與原圖片的均方誤差來表示。

KL divergence 的公式如下

重參數 為了避免計算 KL divergence 中的積分,我們使用重參數的技巧,不是每次產生一個隱含向量,而是生成兩個向量,一個表示均值,一個表示標準差,這里我們默認編碼之后的隱含向量服從一個正態分布的之后,就可以用一個標準正態分布先乘上標準差再加上均值來合成這個正態分布,最后 loss 就是希望這個生成的正態分布能夠符合一個標準正態分布,也就是希望均值為 0,方差為 1

所以最后我們可以將我們的 loss 定義為下面的函數,由均方誤差和 KL divergence 求和得到一個總的 loss

def loss_function(recon_x, x, mu, logvar):
    """
    recon_x: generating images
    x: origin images
    mu: latent mean
    logvar: latent log variance
    """
    MSE = reconstruction_function(recon_x, x)
    # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
    KLD = torch.sum(KLD_element).mul_(-0.5)
    # KL divergence
    return MSE + KLD

用 mnist 數據集來簡單說明一下變分自動編碼器

import os 
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader
 
from torchvision.datasets import MNIST
from torchvision import transforms as tfs
from torchvision.utils import save_image
 
im_tfs = tfs.Compose([
    tfs.ToTensor(),
    tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # 標準化
])
 
train_set = MNIST('./mnist', transform=im_tfs)
train_data = DataLoader(train_set, batch_size=128, shuffle=True)
 
class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
 
        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20) # mean
        self.fc22 = nn.Linear(400, 20) # var
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)
 
    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)
 
    def reparametrize(self, mu, logvar):
        std = logvar.mul(0.5).exp_()
        eps = torch.FloatTensor(std.size()).normal_()
        if torch.cuda.is_available():
            eps = Variable(eps.cuda())
        else:
            eps = Variable(eps)
        return eps.mul(std).add_(mu)
 
    def decode(self, z):
        h3 = F.relu(self.fc3(z))
        return F.tanh(self.fc4(h3))
 
    def forward(self, x):
        mu, logvar = self.encode(x) # 編碼
        z = self.reparametrize(mu, logvar) # 重新參數化成正態分布
        return self.decode(z), mu, logvar # 解碼,同時輸出均值方差
 
net = VAE() # 實例化網絡
if torch.cuda.is_available():
    net = net.cuda()
x, _ = train_set[0]
x = x.view(x.shape[0], -1)
if torch.cuda.is_available():
    x = x.cuda()
x = Variable(x)
_, mu, var = net(x) 
print(mu) 
 
Variable containing:  Columns 0 to 9  -0.0307 -0.1439 -0.0435  0.3472  0.0368 -0.0339  0.0274 -0.5608  0.0280  0.2742  Columns 10 to 19  -0.6221 -0.0894 -0.0933  0.4241  0.1611  0.3267  0.5755 -0.0237  0.2714 -0.2806 [torch.cuda.FloatTensor of size 1x20 (GPU 0)]

可以看到,對于輸入,網絡可以輸出隱含變量的均值和方差,這里的均值方差還沒有訓練 下面開始訓練

reconstruction_function = nn.MSELoss(size_average=False) 
def loss_function(recon_x, x, mu, logvar):
    """
    recon_x: generating images
    x: origin images
    mu: latent mean
    logvar: latent log variance
    """
    MSE = reconstruction_function(recon_x, x)
    # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
    KLD = torch.sum(KLD_element).mul_(-0.5)
    # KL divergence
    return MSE + KLD 
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
 
def to_img(x):
    '''
    定義一個函數將最后的結果轉換回圖片
    '''
    x = 0.5 * (x + 1.)
    x = x.clamp(0, 1)
    x = x.view(x.shape[0], 1, 28, 28)
    return x
 
for e in range(100):
    for im, _ in train_data:
        im = im.view(im.shape[0], -1)
        im = Variable(im)
        if torch.cuda.is_available():
            im = im.cuda()
        recon_im, mu, logvar = net(im)
        loss = loss_function(recon_im, im, mu, logvar) / im.shape[0] # 將 loss 平均
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
 
    if (e + 1) % 20 == 0:
        print('epoch: {}, Loss: {:.4f}'.format(e + 1, loss.data[0]))
        save = to_img(recon_im.cpu().data)
        if not os.path.exists('./vae_img'):
            os.mkdir('./vae_img')
        save_image(save, './vae_img/image_{}.png'.format(e + 1))
  
epoch: 20, Loss: 61.5803 epoch: 40, Loss: 62.9573 epoch: 60, Loss: 63.4285 epoch: 80, Loss: 64.7138 epoch: 100, Loss: 63.3343

變分自動編碼器雖然比一般的自動編碼器效果要好,而且也限制了其輸出的編碼 (code) 的概率分布,但是它仍然是通過直接計算生成圖片和原始圖片的均方誤差來生成 loss,這個方式并不好,生成對抗網絡中,我們會講一講這種方式計算 loss 的局限性,然后會介紹一種新的訓練辦法,就是通過生成對抗的訓練方式來訓練網絡而不是直接比較兩張圖片的每個像素點的均方誤差

以上為個人經驗,希望能給大家一個參考,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • 超詳細PyTorch實現手寫數字識別器的示例代碼
  • Pytorch 實現自定義參數層的例子
  • 關于PyTorch 自動求導機制詳解
  • pytorch實現onehot編碼轉為普通label標簽

標簽:宿遷 常州 駐馬店 六盤水 蘭州 山東 成都 江蘇

巨人網絡通訊聲明:本文標題《pytorch 實現變分自動編碼器的操作》,本文關鍵詞  pytorch,實現,變,分,自動,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《pytorch 實現變分自動編碼器的操作》相關的同類信息!
  • 本頁收集關于pytorch 實現變分自動編碼器的操作的相關信息資訊供網民參考!
  • 推薦文章
    主站蜘蛛池模板: 婷婷午夜精品久久久久久性色AV | 日批批| 欧美色少妇高潮4444| 免费看一级高潮毛片2023| 被强h| 无套内谢少妇毛片A片免费| 男女晚上做运动生宝宝好吗| 日韩欧美国产卡通动漫| 极品嫩苞撕裂哭叫灌白浆漫画| 人獸交XXXⅩ极品少妇| a亚洲欧美中文日韩在线v日本| 暖床糙汉H1VL1| 工口里番肉侵犯全彩无码| 97亚洲AV无码国产精色情园 | av地下页| 欧美亚洲精品suv一区| 综合精品在线| 肉肉辣文| 一级婬片A片AAAA片老牛| 日本AⅤ毛片成人无码迅雷 | 中文字幕天堂久久精品| 白丝足控| 久久久久亚洲精品成人网小说| 亚洲AV人无码激艳猛片服务器| 我的娇妻小和尚番外| 精品日韩一区二区三区| 一级特黄AAA裸片无码| 蜜芽忘忧草老狼二区大豆在线看 | 国产精品sexvideosHD| ririai66在线播放| 男女啪啪动态图| 女人一级一级毛片| 丰满老熟女一级AA片色欲| 美男娇喘起来H女攻| 国产免费久久精品| 欧码和中国码的对比表| 掀起裙子扶着巨物坐下去| 17C一起草在线观看入口官网| eeuss一区二区三区乱码| **抽搐地狱| 久久久久久夜精品精品免费 |