array([[ 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255],
[ 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255],
[ 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0],
[255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255]], dtype=uint8)
對測試圖片操作,取得我們需要的,每個數字的像素 .
# 初始化卷積核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
#讀取輸入圖像,預處理
image = cv2.imread(image)
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray)
#禮帽操作,突出更明亮的區域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat',tophat)
#
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相當于用3*3的
ksize=-1)
gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")
print (np.array(gradX).shape)
cv_show('gradX',gradX)
#通過閉操作(先膨脹,再腐蝕)將數字連在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradX',gradX)
#THRESH_OTSU會自動尋找合適的閾值,適合雙峰,需把閾值參數設置為0
thresh = cv2.threshold(gradX, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('thresh',thresh)
#再來一個閉操作
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再來一個閉操作
cv_show('thresh',thresh)
# 計算輪廓
thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
cv_show('img',cur_img)
locs = []
# 遍歷輪廓
for (i, c) in enumerate(cnts):
# 計算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
# 選擇合適的區域,根據實際任務來,這里的基本都是四個數字一組
if ar > 2.5 and ar 4.0:
if (w > 40 and w 55) and (h > 10 and h 20):
#符合的留下來
locs.append((x, y, w, h))
# 將符合的輪廓從左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []
# 遍歷每一個輪廓中的數字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
# initialize the list of group digits
groupOutput = []
# 根據坐標提取每一個組
group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
cv_show('group',group)
# 預處理
group = cv2.threshold(group, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('group',group)
# 計算每一組的輪廓
group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
digitCnts = contours.sort_contours(digitCnts,
method="left-to-right")[0]
# 計算每一組中的每一個數值
for c in digitCnts:
# 找到當前數值的輪廓,resize成合適的的大小
(x, y, w, h) = cv2.boundingRect(c)
roi = group[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
cv_show('roi',roi)
# 計算匹配得分
scores = []
# 在模板中計算每一個得分
for (digit, digitROI) in digits.items():
# 模板匹配
result = cv2.matchTemplate(roi, digitROI,
cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score)
# 得到最合適的數字
groupOutput.append(str(np.argmax(scores)))
# 畫出來
cv2.rectangle(image, (gX - 5, gY - 5),
(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)
# 得到結果
output.extend(groupOutput)
# 打印結果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)
# (194, 300)
# Credit Card Type: MasterCard
# Credit Card #: 5412751234567890
到此這篇關于Python如何識別銀行卡卡號?的文章就介紹到這了,更多相關Python識別卡號內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!