好湿?好紧?好多水好爽自慰,久久久噜久噜久久综合,成人做爰A片免费看黄冈,机机对机机30分钟无遮挡

主頁 > 知識庫 > python實現A*尋路算法

python實現A*尋路算法

熱門標簽:打電話機器人營銷 聊城語音外呼系統 ai電銷機器人的優勢 地圖標注自己和別人標注區別 騰訊地圖標注沒法顯示 商家地圖標注海報 南陽打電話機器人 孝感營銷電話機器人效果怎么樣 海外網吧地圖標注注冊

A* 算法簡介

A* 算法需要維護兩個數據結構:OPEN 集和 CLOSED 集。OPEN 集包含所有已搜索到的待檢測節點。初始狀態,OPEN集僅包含一個元素:開始節點。CLOSED集包含已檢測的節點。初始狀態,CLOSED集為空。每個節點還包含一個指向父節點的指針,以確定追蹤關系。

A* 算法會給每個搜索到的節點計算一個G+H 的和值F:

  • F = G + H
  • G:是從開始節點到當前節點的移動量。假設開始節點到相鄰節點的移動量為1,該值會隨著離開始點越來越遠而增大。
  • H:是從當前節點到目標節點的移動量估算值。
    • 如果允許向4鄰域的移動,使用曼哈頓距離。
    • 如果允許向8鄰域的移動,使用對角線距離。

算法有一個主循環,重復下面步驟直到到達目標節點:
1 每次從OPEN集中取一個最優節點n(即F值最小的節點)來檢測。
2 將節點n從OPEN集中移除,然后添加到CLOSED集中。
3 如果n是目標節點,那么算法結束。
4 否則嘗試添加節點n的所有鄰節點n'。

  • 鄰節點在CLOSED集中,表示它已被檢測過,則無需再添加。
  • 鄰節點在OPEN集中:
    • 如果重新計算的G值比鄰節點保存的G值更小,則需要更新這個鄰節點的G值和F值,以及父節點;
    • 否則不做操作
  • 否則將該鄰節點加入OPEN集,設置其父節點為n,并設置它的G值和F值。

有一點需要注意,如果開始節點到目標節點實際是不連通的,即無法從開始節點移動到目標節點,那算法在第1步判斷獲取到的節點n為空,就會退出

關鍵代碼介紹

保存基本信息的地圖類

地圖類用于隨機生成一個供尋路算法工作的基礎地圖信息

先創建一個map類, 初始化參數設置地圖的長度和寬度,并設置保存地圖信息的二維數據map的值為0, 值為0表示能移動到該節點。

class Map():
	def __init__(self, width, height):
		self.width = width
		self.height = height
		self.map = [[0 for x in range(self.width)] for y in range(self.height)]

在map類中添加一個創建不能通過節點的函數,節點值為1表示不能移動到該節點。

	def createBlock(self, block_num):
		for i in range(block_num):
			x, y = (randint(0, self.width-1), randint(0, self.height-1))
			self.map[y][x] = 1

在map類中添加一個顯示地圖的函數,可以看到,這邊只是簡單的打印出所有節點的值,值為0或1的意思上面已經說明,在后面顯示尋路算法結果時,會使用到值2,表示一條從開始節點到目標節點的路徑。

	def showMap(self):
		print("+" * (3 * self.width + 2))
		for row in self.map:
			s = '+'
			for entry in row:
				s += ' ' + str(entry) + ' '
			s += '+'
			print(s)
		print("+" * (3 * self.width + 2))

添加一個隨機獲取可移動節點的函數

	def generatePos(self, rangeX, rangeY):
		x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
		while self.map[y][x] == 1:
			x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
		return (x , y)

搜索到的節點類

每一個搜索到將到添加到OPEN集的節點,都會創建一個下面的節點類,保存有entry的位置信息(x,y),計算得到的G值和F值,和該節點的父節點(pre_entry)。

class SearchEntry():
	def __init__(self, x, y, g_cost, f_cost=0, pre_entry=None):
		self.x = x
		self.y = y
		# cost move form start entry to this entry
		self.g_cost = g_cost
		self.f_cost = f_cost
		self.pre_entry = pre_entry
	
	def getPos(self):
		return (self.x, self.y)

算法主函數介紹

下面就是上面算法主循環介紹的代碼實現,OPEN集和CLOSED集的數據結構使用了字典,在一般情況下,查找,添加和刪除節點的時間復雜度為O(1), 遍歷的時間復雜度為O(n), n為字典中對象數目。

def AStarSearch(map, source, dest):
	...
	openlist = {}
	closedlist = {}
	location = SearchEntry(source[0], source[1], 0.0)
	dest = SearchEntry(dest[0], dest[1], 0.0)
	openlist[source] = location
	while True:
		location = getFastPosition(openlist)
		if location is None:
			# not found valid path
			print("can't find valid path")
			break;
		
		if location.x == dest.x and location.y == dest.y:
			break
		
		closedlist[location.getPos()] = location
		openlist.pop(location.getPos())
		addAdjacentPositions(map, location, dest, openlist, closedlist)
	
	#mark the found path at the map
	while location is not None:
		map.map[location.y][location.x] = 2
		location = location.pre_entry

我們按照算法主循環的實現來一個個講解用到的函數。
下面函數就是從OPEN集中獲取一個F值最小的節點,如果OPEN集會空,則返回None。

	# find a least cost position in openlist, return None if openlist is empty
	def getFastPosition(openlist):
		fast = None
		for entry in openlist.values():
			if fast is None:
				fast = entry
			elif fast.f_cost > entry.f_cost:
				fast = entry
		return fast

addAdjacentPositions 函數對應算法主函數循環介紹中的嘗試添加節點n的所有鄰節點n'。

	# add available adjacent positions
	def addAdjacentPositions(map, location, dest, openlist, closedlist):
		poslist = getPositions(map, location)
		for pos in poslist:
			# if position is already in closedlist, do nothing
			if isInList(closedlist, pos) is None:
				findEntry = isInList(openlist, pos)
				h_cost = calHeuristic(pos, dest)
				g_cost = location.g_cost + getMoveCost(location, pos)
				if findEntry is None :
					# if position is not in openlist, add it to openlist
					openlist[pos] = SearchEntry(pos[0], pos[1], g_cost, g_cost+h_cost, location)
				elif findEntry.g_cost > g_cost:
					# if position is in openlist and cost is larger than current one,
					# then update cost and previous position
					findEntry.g_cost = g_cost
					findEntry.f_cost = g_cost + h_cost
					findEntry.pre_entry = location

getPositions 函數獲取到所有能夠移動的節點,這里提供了2種移動的方式:

  • 允許上,下,左,右 4鄰域的移動
  • 允許上,下,左,右,左上,右上,左下,右下 8鄰域的移動
	def getNewPosition(map, locatioin, offset):
		x,y = (location.x + offset[0], location.y + offset[1])
		if x  0 or x >= map.width or y  0 or y >= map.height or map.map[y][x] == 1:
			return None
		return (x, y)
		
	def getPositions(map, location):
		# use four ways or eight ways to move
		offsets = [(-1,0), (0, -1), (1, 0), (0, 1)]
		#offsets = [(-1,0), (0, -1), (1, 0), (0, 1), (-1,-1), (1, -1), (-1, 1), (1, 1)]
		poslist = []
		for offset in offsets:
			pos = getNewPosition(map, location, offset)
			if pos is not None:			
				poslist.append(pos)
		return poslist

isInList 函數判斷節點是否在OPEN集 或CLOSED集中

	# check if the position is in list
	def isInList(list, pos):
		if pos in list:
			return list[pos]
		return None

calHeuristic 函數簡單得使用了曼哈頓距離,這個后續可以進行優化。
getMoveCost 函數根據是否是斜向移動來計算消耗(斜向就是2的開根號,約等于1.4)

	# imporve the heuristic distance more precisely in future
	def calHeuristic(pos, dest):
		return abs(dest.x - pos[0]) + abs(dest.y - pos[1])
		
	def getMoveCost(location, pos):
		if location.x != pos[0] and location.y != pos[1]:
			return 1.4
		else:
			return 1

代碼的初始化

可以調整地圖的長度,寬度和不可移動節點的數目。
可以調整開始節點和目標節點的取值范圍。

WIDTH = 10
HEIGHT = 10
BLOCK_NUM = 15
map = Map(WIDTH, HEIGHT)
map.createBlock(BLOCK_NUM)
map.showMap()

source = map.generatePos((0,WIDTH//3),(0,HEIGHT//3))
dest = map.generatePos((WIDTH//2,WIDTH-1),(HEIGHT//2,HEIGHT-1))
print("source:", source)
print("dest:", dest)
AStarSearch(map, source, dest)
map.showMap()

執行的效果圖如下,第一個表示隨機生成的地圖,值為1的節點表示不能移動到該節點。
第二個圖中值為2的節點表示找到的路徑。

完整代碼

使用python3.7編譯

from random import randint

class SearchEntry():
	def __init__(self, x, y, g_cost, f_cost=0, pre_entry=None):
		self.x = x
		self.y = y
		# cost move form start entry to this entry
		self.g_cost = g_cost
		self.f_cost = f_cost
		self.pre_entry = pre_entry
	
	def getPos(self):
		return (self.x, self.y)

class Map():
	def __init__(self, width, height):
		self.width = width
		self.height = height
		self.map = [[0 for x in range(self.width)] for y in range(self.height)]
	
	def createBlock(self, block_num):
		for i in range(block_num):
			x, y = (randint(0, self.width-1), randint(0, self.height-1))
			self.map[y][x] = 1
	
	def generatePos(self, rangeX, rangeY):
		x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
		while self.map[y][x] == 1:
			x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
		return (x , y)

	def showMap(self):
		print("+" * (3 * self.width + 2))

		for row in self.map:
			s = '+'
			for entry in row:
				s += ' ' + str(entry) + ' '
			s += '+'
			print(s)

		print("+" * (3 * self.width + 2))
	

def AStarSearch(map, source, dest):
	def getNewPosition(map, locatioin, offset):
		x,y = (location.x + offset[0], location.y + offset[1])
		if x  0 or x >= map.width or y  0 or y >= map.height or map.map[y][x] == 1:
			return None
		return (x, y)
		
	def getPositions(map, location):
		# use four ways or eight ways to move
		offsets = [(-1,0), (0, -1), (1, 0), (0, 1)]
		#offsets = [(-1,0), (0, -1), (1, 0), (0, 1), (-1,-1), (1, -1), (-1, 1), (1, 1)]
		poslist = []
		for offset in offsets:
			pos = getNewPosition(map, location, offset)
			if pos is not None:			
				poslist.append(pos)
		return poslist
	
	# imporve the heuristic distance more precisely in future
	def calHeuristic(pos, dest):
		return abs(dest.x - pos[0]) + abs(dest.y - pos[1])
		
	def getMoveCost(location, pos):
		if location.x != pos[0] and location.y != pos[1]:
			return 1.4
		else:
			return 1

	# check if the position is in list
	def isInList(list, pos):
		if pos in list:
			return list[pos]
		return None
	
	# add available adjacent positions
	def addAdjacentPositions(map, location, dest, openlist, closedlist):
		poslist = getPositions(map, location)
		for pos in poslist:
			# if position is already in closedlist, do nothing
			if isInList(closedlist, pos) is None:
				findEntry = isInList(openlist, pos)
				h_cost = calHeuristic(pos, dest)
				g_cost = location.g_cost + getMoveCost(location, pos)
				if findEntry is None :
					# if position is not in openlist, add it to openlist
					openlist[pos] = SearchEntry(pos[0], pos[1], g_cost, g_cost+h_cost, location)
				elif findEntry.g_cost > g_cost:
					# if position is in openlist and cost is larger than current one,
					# then update cost and previous position
					findEntry.g_cost = g_cost
					findEntry.f_cost = g_cost + h_cost
					findEntry.pre_entry = location
	
	# find a least cost position in openlist, return None if openlist is empty
	def getFastPosition(openlist):
		fast = None
		for entry in openlist.values():
			if fast is None:
				fast = entry
			elif fast.f_cost > entry.f_cost:
				fast = entry
		return fast

	openlist = {}
	closedlist = {}
	location = SearchEntry(source[0], source[1], 0.0)
	dest = SearchEntry(dest[0], dest[1], 0.0)
	openlist[source] = location
	while True:
		location = getFastPosition(openlist)
		if location is None:
			# not found valid path
			print("can't find valid path")
			break;
		
		if location.x == dest.x and location.y == dest.y:
			break
		
		closedlist[location.getPos()] = location
		openlist.pop(location.getPos())
		addAdjacentPositions(map, location, dest, openlist, closedlist)
		
	#mark the found path at the map
	while location is not None:
		map.map[location.y][location.x] = 2
		location = location.pre_entry	

	
WIDTH = 10
HEIGHT = 10
BLOCK_NUM = 15
map = Map(WIDTH, HEIGHT)
map.createBlock(BLOCK_NUM)
map.showMap()

source = map.generatePos((0,WIDTH//3),(0,HEIGHT//3))
dest = map.generatePos((WIDTH//2,WIDTH-1),(HEIGHT//2,HEIGHT-1))
print("source:", source)
print("dest:", dest)
AStarSearch(map, source, dest)
map.showMap()

到此這篇關于python實現A*尋路算法的文章就介紹到這了,更多相關python A*尋路算法內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • Python3 A*尋路算法實現方式
  • python實現Dijkstra靜態尋路算法
  • python 實現A*算法的示例代碼

標簽:南寧 六盤水 聊城 撫州 揚州 牡丹江 迪慶 楊凌

巨人網絡通訊聲明:本文標題《python實現A*尋路算法》,本文關鍵詞  python,實現,尋路,算法,python,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《python實現A*尋路算法》相關的同類信息!
  • 本頁收集關于python實現A*尋路算法的相關信息資訊供網民參考!
  • 推薦文章
    主站蜘蛛池模板: 子长县| 国产熟妇AV一区21p| 日日夜夜欧美| 温柔的岳半推半就的从了我| 美女尿囗秘?免费图片| XXX性欧美| 99九色| 干b视频| 一级看片免费视频囗交| 亚洲AV秘?无码一区在线男奴| 少妇婬乱裸体毛片久久久久久老狼 | 极品少妇被猛的白浆直流草莓视频| 毛片免费全部免费播放| 大粗壮h军人男男| 国产精品制服丝袜| 2008艳照裸体泄露| JlZZJlZZ亚洲日本少妇| 黄漫?18禁漫画app| 强壮的公么把我弄得好爽| 艳妇荡交换| 迅雷电影院三级| 一级做a爰片| 被男狂揉吃奶40分钟| cc白桃少女| 欧美高清性XXXXHDvideosex| 国产精品人妻无码一区二区三区| 色成人免费视频| 大吸野电影| 松弛怎么变紧致| 99久久精品99国产亚洲AV成人 | 俱乐部yin乱聚会小说| 英语老师脱了丝袜让我桶视频| 女人自慰喷潮A片AAA区| 日本69xxxxx| chinese老太交70old| 亚洲日韩色少妇无码播放明星| 中文字字幕在线中文乱码红治院| 美女毛片老太婆bbb80岁| 亚洲日本欧美| bl揉顶前列腺哭叫np| 国产又黄又猛又粗又爽的A片小说 色情乱婬一区二区三区免费看老牛 |