好湿?好紧?好多水好爽自慰,久久久噜久噜久久综合,成人做爰A片免费看黄冈,机机对机机30分钟无遮挡

主頁 > 知識庫 > pytorch教程實現mnist手寫數字識別代碼示例

pytorch教程實現mnist手寫數字識別代碼示例

熱門標簽:徐州天音防封電銷卡 湛江電銷防封卡 南昌辦理400電話怎么安裝 獲客智能電銷機器人 哈爾濱外呼系統代理商 佛山防封外呼系統收費 鄭州智能外呼系統運營商 電話機器人適用業務 不錯的400電話辦理

1.構建網絡

nn.Moudle是pytorch官方指定的編寫Net模塊,在init函數中添加需要使用的層,在foeword中定義網絡流向。

下面詳細解釋各層:

conv1層:輸入channel = 1 ,輸出chanael = 10,濾波器5*5

maxpooling = 2*2

conv2層:輸入channel = 10 ,輸出chanael = 20,濾波器5*5,

dropout

maxpooling = 2*2

fc1層:輸入320 個神經單元,輸出50個神經單元
fc1層:輸入50個神經單元 ,輸出10個神經單元
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)         
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10) 
    def forward(self, x):                                 #x.size() = 28*28*1
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))  #x.size() =12*12*10    
        x = x.view(-1, 320)                                          #x.size() =1*320 
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

2.編寫訓練代碼

model = Net()                                 #調用寫好的網絡
if args.cuda:                                 #如果有GPU使用CPU
    model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)   #設置SGD隨機梯度下降算法
def train(epoch):                                                 
    model.train()                             
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()                                  #梯度初始化為O
        output = model(data) 
        loss = F.nll_loss(output, target)                      #簡歷loss function
        loss.backward()                                        #反向傳播,計算梯度
        optimizer.step()                                       #更新權重
        if batch_idx % args.log_interval == 0:                 #輸出信息
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data[0]))

3.編寫測試代碼

def test():
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data, volatile=True), Variable(target)
        output = model(data)
        test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss
        pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
        correct += pred.eq(target.data.view_as(pred)).long().cpu().sum()
     test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

4.指導程序train和test

for epoch in range(1, args.epochs + 1):
    train(epoch)                              #訓練N個epoch
    test()                                    #檢驗在測試集上的表現

5.完整代碼

# -*- coding: utf-8 -*-
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                    help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                    help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
                    help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                    help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                    help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
                    help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                    help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
 
torch.manual_seed(args.seed)
if args.cuda:
    torch.cuda.manual_seed(args.seed) 
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10) 
    def forward(self, x):
        print (x.size())
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        print(x.size())
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        print(x.size())
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
 model = Net()                                 #調用寫好的網絡
if args.cuda:                                 #如果有GPU使用CPU
    model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)   #設置SGD隨機梯度下降算法
def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()                                  #梯度初始化為O
        output = model(data)
        loss = F.nll_loss(output, target)                      #簡歷loss function
        loss.backward()                                        #反向傳播,計算梯度
        optimizer.step()                                       #更新權重
        if batch_idx % args.log_interval == 0:                 #輸出信息
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data[0]))
def test():
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data, volatile=True), Variable(target)
        output = model(data)
        test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss
        pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
        correct += pred.eq(target.data.view_as(pred)).long().cpu().sum()
 
    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset))) 
for epoch in range(1, args.epochs + 1):
    train(epoch)
    test()

以上就是pytorch教程實現mnist手寫數字識別代碼示例的詳細內容,更多關于pytorch實現mnist手寫數字識別的資料請關注腳本之家其它相關文章!

您可能感興趣的文章:
  • 詳解PyTorch手寫數字識別(MNIST數據集)
  • PyTorch CNN實戰之MNIST手寫數字識別示例
  • Pytorch實現的手寫數字mnist識別功能完整示例
  • 手把手教你實現PyTorch的MNIST數據集
  • pytorch實現MNIST手寫體識別

標簽:安康 蕪湖 廣西 蘭州 懷化 紹興 呂梁 吉安

巨人網絡通訊聲明:本文標題《pytorch教程實現mnist手寫數字識別代碼示例》,本文關鍵詞  pytorch,教程,實現,mnist,手寫,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《pytorch教程實現mnist手寫數字識別代碼示例》相關的同類信息!
  • 本頁收集關于pytorch教程實現mnist手寫數字識別代碼示例的相關信息資訊供網民參考!
  • 推薦文章
    主站蜘蛛池模板: 国产精品资源在线观看| 看日批| 女同h啪肉np文| 王爷夜里泄欲小丫鬟h| 男女xoⅹo视频| 又色又爽又黄的三级农村电影| 337p于子涵人体大胆图片| 国产激情在线观看| 农村同性壮汉野外互交H| 欧洲黑人巨大视频在线观看| 高情商最动人的祝福语| 99久久国产亚洲综合精品| 蜜臀91丨国产人妻人伦图片| 女人怎样才能下面的水出得多| 主人抽打惩罚女贱奴屁股和胸| 妓女撅好屁股扒开腚| 日韩??成人精品无码专区 | 亚洲欧美日韩国产一区图片 | 四虎最新成人永久网站在线观看| 在线成人av电影| 外国做爰猛烈床戏大尺度| 精品国产污污免费15| 法国a级情欲片忠贞| 欧美久| 18禁止观看1000免费| 亚洲精品主播一区二区三区| 美女视频永久黄网站免费观看韩国| 四虎国产精品免费久久久| 日日夜夜噜| 天天曰天天爽| 26UUU久久噜噜_噜噜| 高清影院|精品秒播3| 女人特写大尺度ass| 精品国产三级国产AⅤ在线观看| 国产丝袜精品| 激情黄+色+成+人| 国模私拍大尺度视频在线播放| 里番3d| 男j进女p动态图自慰失禁| 国产无毛| 国产微拍精品一区二区视频|