好湿?好紧?好多水好爽自慰,久久久噜久噜久久综合,成人做爰A片免费看黄冈,机机对机机30分钟无遮挡

主頁 > 知識庫 > MongoDB使用小結(jié):一些不常見的經(jīng)驗分享

MongoDB使用小結(jié):一些不常見的經(jīng)驗分享

熱門標簽:電銷機器人是什么軟件 怎么投訴地圖標注 杭州人工電銷機器人價格 濟南電銷機器人加盟公司 廣州長安公司怎樣申請400電話 老虎洗衣店地圖標注 蘋果汽車租賃店地圖標注 呼和浩特電銷外呼系統(tǒng)加盟 云南外呼系統(tǒng)

本文完成時MongoDB的最新版本為MongoDB 2.6

1、count統(tǒng)計結(jié)果錯誤

這是由于分布式集群正在遷移數(shù)據(jù),它導致count結(jié)果值錯誤,需要使用aggregate pipeline來得到正確統(tǒng)計結(jié)果,例如:

db.collection.aggregate([{$group: {_id: null, count: {$sum: 1}}}])

引用:“On a sharded cluster, count can result in an inaccurate count if orphaned documents exist or if a chunk migration is in progress.”

參考:http://docs.mongodb.org/manual/reference/command/count/ 

2、從shell中更新/寫入到文檔的數(shù)字,會變?yōu)閒loat類型

引用:“shell中的數(shù)字都被MongoDB當作是雙精度數(shù)。這意味著如果你從數(shù)據(jù)庫中獲得的是一個32位整數(shù),修改文檔后,將文檔存回數(shù)據(jù)庫的時候,這個整數(shù)也就被換成了浮點數(shù),即便保持這個整數(shù)原封不動也會這樣的。”

參考:《MongoDB權(quán)威指南》第一版

3、restore數(shù)據(jù)到新DB時,不要去先建索引

把bson數(shù)據(jù)文件restore到另一個DB時,需要注意:不能先創(chuàng)建索引再restore數(shù)據(jù),否則性能極差,mongorestore工具默認會在restore完數(shù)據(jù)時,根據(jù)dump出來的index信息創(chuàng)建索引,無須自己創(chuàng)建,如果是要更換索引,也應該在數(shù)據(jù)入庫完之后再創(chuàng)建。

4、DB中的namespace數(shù)量太多導致無法創(chuàng)建新的collection

錯誤提示:error: hashtable namespace index max chain reached:1335,如何解決呢?
這是DB中的collection個數(shù)太多導致,在實踐中以每個collection 8KB計算(跟官方文檔里說的不同,可能跟index有關系),256MB可以支持36000個collection。db.system.namespaces.count() 命令可以統(tǒng)計當前DB內(nèi)的collection數(shù)目,DB可支持collection數(shù)量是由于nssize參數(shù)指定的,它指定了dbname.ns磁盤文件的大小,也就指定了DB可支持的最大collection數(shù)目,ns為namespace縮寫。默認nssize為16MB。
如果重啟MongoD并修改了nssize參數(shù),這新nssize只會對新加入的DB生效,對以前已經(jīng)存在的DB不生效,如果你想對已經(jīng)存在的DB采用新的nssize,必須在加大nssize重啟之后新建DB,然后把舊DB的collection 復制到新DB中。
namespace限制相關文檔:http://docs.mongodb.org/manual/reference/limits/#Number-of-Namespaces

5、moveChunk因舊數(shù)據(jù)未刪除而失敗

錯誤日志:”moveChunk failed to engage TO-shard in the data transfer: can't accept new chunks because there are still 1 deletes from previous migration“。
意思是說,當前正要去接受新chunk 的shard正在刪除上一次數(shù)據(jù)遷移出的數(shù)據(jù),不能接受新Chunk,于是本次遷移失敗。這種log里顯示的是warning,但有時候會發(fā)現(xiàn)shard的刪除持續(xù)了十幾天都沒完成,查看日志,可以發(fā)現(xiàn)同一個chunk的刪除在不斷重復執(zhí)行,重啟所有無法接受新chunk的shard可以解決這個問題。
參考:
http://stackoverflow.com/questions/26640861/movechunk-failed-to-engage-to-shard-in-the-data-transfer-cant-accept-new-chunk
如果采用了balancer自動均衡,那么可以加上_waitForDelete參數(shù),如:
{ "_id" : "balancer", "activeWindow" : { "start" : "12:00", "stop" : "19:30" }, "stopped" : false, "_waitForDelete" : true }
,這樣就不會因delete堆積而導致后續(xù)migrate失敗,當然,需要考慮到這里的阻塞是否會影響到程序正常運轉(zhuǎn),在實踐中慎重采用使用waitForDelete,因為發(fā)現(xiàn)加上它之后遷移性能非常差,可能出現(xiàn)卡住十幾個小時的情況,外界拿住了被遷移chunk的游標句柄,這時候刪除不能執(zhí)行,阻塞了后續(xù)其它遷移操作。
游標被打開而導致被遷移數(shù)據(jù)無法及時刪除時的日志:
2015-03-07T10:21:20.118+0800 [RangeDeleter] rangeDeleter waiting for open cursors in: cswuyg_test.cswuyg_test, min: { _id: -6665031702664277348 }, max: { _id: -6651575076051867067 }, elapsedSecs: 6131244, cursors: [ 220477635588 ]
這可能會卡住幾十小時,甚至一直卡住,影響后續(xù)的moveChunk操作,導致數(shù)據(jù)不均衡。
解決方法還是:重啟。

6、bson size不能超過16MB的限制

單個文檔的BSON size不能超過16MB。find查詢有時會遇到16MB的限制,譬如使用$in 查詢的時候,in中的數(shù)組元素不能太多。對一些特殊的數(shù)據(jù)源做MapReduce,MapReduce中間會將數(shù)據(jù)組合為“KEY:[VALUE1、VALUE2]”這樣的格式,當value特別多的時候,也可能會遇上16MB的限制。 限制無處不在,需要注意,”The issue is that the 16MB document limit applies to everything - documents you store, documents MapReduce tries to generate, documents aggregation tries to return, etc.

7、批量插入

批量插入可以減少數(shù)據(jù)往服務器的提交次數(shù),提高性能,一般批量提交的BSON size不超過48MB,如果超過了,驅(qū)動程序自動修改為往mongos的多次提交。

8、安全寫入介紹及其沿革

關鍵字:acknowledge、write concern。

在2012年11月之前,MongoDB驅(qū)動、shell客戶端默認是不安全寫入,也就是fire-and-forget,動作發(fā)出之后,不關心是否真的寫入成功,如果這時候出現(xiàn)了_id重復、非UTF8字符等異常,客戶端不會知道。在2012年11月之后,默認為安全寫入,安全級別相當于參數(shù)w=1,客戶端可以知道寫入操作是否成功。如果代碼使用Mongo或者Collection來連接數(shù)據(jù)庫,則說明它是默認不安全寫入的legacy代碼,安全寫入已經(jīng)把連接數(shù)據(jù)庫修改為MongoClient接口。
安全寫入可以分為三個級別,
第一級是默認的安全寫入,確認數(shù)據(jù)寫入到內(nèi)存中就返回(w=N屬于這一級);
第二級是Journal save,數(shù)據(jù)在寫入到DB磁盤文件之前,MongoDB會先把操作寫入到Journal文件,這一級指的是確認寫入了Journal文件就返回;
第三級是fysnc,所有數(shù)據(jù)刷寫到到DB磁盤文件才返回。
一般第一級就足夠了,第二級是為了保證在機器異常斷電的情況下也不會丟失數(shù)據(jù)。安全寫入要付出性能的代碼:不安全寫入的性能大概是默認安全寫入的3倍。使用fync參數(shù)則性能更差,一般不使用。
如果是副本集(replica set),其w=N參數(shù),N表示安全寫入到多少個副本集才返回。
參考:
http://docs.mongodb.org/manual/release-notes/drivers-write-concern/
http://docs.mongodb.org/manual/core/write-concern/
http://blog.mongodirector.com/understanding-durability-write-safety-in-mongodb/
http://whyjava.wordpress.com/2011/12/08/how-mongodb-different-write-concern-values-affect-performance-on-a-single-node/

9、善用索引——可能跟你以為的不一樣

使用組合索引的時候,如果有兩組索引,在限量查詢的情況下,可能跟常規(guī)的認識不同:
利用組合索引做的查詢,在不同數(shù)量級下會有不同性能:
組合索引A: {"age": 1, "username": 1}
組合索引B: {"username": 1, "age": 1}
全量查詢: db.user.find({"age": {"$gte": 21, "$lte": 30}}).sort({"username" :1}),使用索引A的性能優(yōu)于索引B。
限量查詢: db.user.find({"age": {"$gte": 21, "$lte": 30}}).sort({"username": 1}).limit(1000),使用索引B的性能優(yōu)于索引A。
這兩個查詢在使用索引A的時候,是先根據(jù)age索引找到符合age的數(shù)據(jù),然后再對這些結(jié)果做排序。使用索引B的時候,是遍歷name,對應的數(shù)據(jù)判斷age,然后得到的結(jié)果是name有序的。
優(yōu)先使用sort key索引,在大多數(shù)應用上執(zhí)行得很好。
參考:《MongoDB——The Definitive Guide 2nd Edition》page89

10、查詢時索引位置的無順序性

做find的時候,并不要求索引一定要在前面,
譬如:
db.test集合中對R有索引
db.test.find({R:"AA", "H": "BB"}).limit(100).explain()
db.test.find({"H":"BB", "R" : "AA"}).limit(100).explain()
這兩個查找性能一樣,它都會使用R索引。

11、使用組合索引做shard key可以大幅度提高集群性能

“固定值+增量值” 兩字段做組合索引可以有效的實現(xiàn)分布式集群中的分散多熱點寫入、讀取。以下為讀書筆記:
在單個MongoDB實例上,最高效的寫入是順序?qū)懭耄鳰ongoDB集群則要求寫入能隨機,以便平均分散到多個MongoDB實例。所以最高效的寫入是有多個局部熱點:在多個MongoDB實例之間是分散寫入,在實例內(nèi)部是順序?qū)懭搿?要實現(xiàn)這一點,我們采用組合索引。
例如:shardkey的第一部分是很粗糙的,可選集很少的字段,索引的第二部分是遞增字段,當數(shù)據(jù)增加到一定程度時,會出現(xiàn)很多第一部分相同第二部分不同的chunk,數(shù)據(jù)只會在最后一個chunk里寫入數(shù)據(jù),當?shù)谝徊糠植煌腸hunk分散在多個shard上,就實現(xiàn)了多熱點的寫入。如果在一個shard上,不止一個chunk可以寫入數(shù)據(jù),那也就是說不止一個熱點,當熱點非常多的時候,也就等同于無熱點的隨機寫入。當一個chunk分裂之后,只能有一個成為熱點,另一個不能再被寫入,否則就會產(chǎn)生兩個熱點,不再寫入的chunk也就是死掉了,后續(xù)只會對它有讀操作。

最典型的應用是具有日期屬性的日志處理,shard key選擇“日期+用戶ID”組合,保證了數(shù)據(jù)寫入時的局部熱點(一個shard上只有少數(shù)幾個chunk被寫入,避免隨機IO)和全局分散(所有的shard上都有寫入數(shù)據(jù),充分利用磁盤IO)。
我在實踐中除了書中講到的組合鍵方式外,還加上了預分片策略,避免了早期數(shù)據(jù)增長過程中的分片和數(shù)據(jù)遷移。另外還盡可能的制造能利用局部性原理的數(shù)據(jù)寫入,例如在數(shù)據(jù)寫入之前先對數(shù)據(jù)排序,有大約30%左右的update性能提升。

預分片是這樣子做的:根據(jù)組合shardkey信息先分裂好chunk,把這些空chunk移動到各個shard上,避免了后續(xù)自動分裂引起的數(shù)據(jù)遷移。

good case:

環(huán)境:一臺機器、7分片、MongoDB2.6版本、shard key選擇“日期+用戶ID組合”,

數(shù)據(jù):寫入使用批量插入,對10億條日志級分片集群的寫入,寫入1000W條日志只需要35分鐘,每條日志約0.11K。

bad case:

環(huán)境:3臺機器、18分片、MongoDB2.6版本、shard key選擇 _id的hashid

數(shù)據(jù):寫入采用批量插入,對3億條日志級分片集群的寫入,寫入300W條日志耗時35分鐘,每條日志約0.11K。

從對比可以看到,在數(shù)據(jù)量比較大的情況下選擇組合索引做shard key性能明顯優(yōu)于選擇hashid。

我在實際應用中還遇到選擇hashid的更極端情況:對3條機器18分片3億條日志集群每天寫入300W條日志,耗時170分鐘,每條日志約4K。每次寫入數(shù)據(jù)時,所有分片磁盤IO使用率都達到100%。

附創(chuàng)建組合索引和使用組合索引做shard key 的 mongo shell代碼:

xx> db.cswuyg.ensureIndex({'code':1, 'insert_time':1})

xx> use admin

admin> db.runCommand({"enablesharding":"xx"})

admin> db.runCommand({"shardcollection":"xx.cswuyg","key":{'code':1, 'insert_time':1}})

 

參考:《MongoDB——The Definitive Guide 2nd Edition》 page268

12、怎么建索引更能提高查詢性能?

在查詢時,索引是否高效,要注意它的cardinality(cardinality越高表示該鍵可選擇的值越多),在組合索引中,讓cardinality高的放在前面。注意這里跟分布式環(huán)境選擇shard key的不同。以下為讀書筆記:
index cardinality(索引散列程度),表示的是一個索引所對應到的值的多少,散列程度越低,則一個索引對應的值越多,索引效果越差:在使用索引時,高散列程度的索引可以更多的排除不符合條件的文檔,讓后續(xù)的比較在一個更小的集合中執(zhí)行,這更高效。所以一般選擇高散列程度的鍵做索引,或者在組合索引中,把高散列程度的鍵放在前面。
參考:《MongoDB——The Definitive Guide 2nd Edition》 page98

13、非原地update,性能會很差

update文檔時,如果新文檔的空間占用大于舊文檔加上它周圍padding的空間,那么就會放棄原來的位置,把數(shù)據(jù)拷貝到新空間。
參考:《MongoDB——The Definitive Guide 2nd Edition》 page43

14、無法在索引建立之后再去增加索引的過期時間

如果索引建立指定了過期時間,后續(xù)要update過期時間可以這樣子:db.runCommand({"collMod":"a", index:{keyPattern:{"_":-1}, expireAfterSeconds: 60}})。

注意,通過collMod能修改過期時間的前提是:這個索引有過期時間,如果這個索引之前沒有設置過期時間,那么無法update,只能刪了索引,重建索引并指定過期時間。
參考:http://docs.mongodb.org/manual/tutorial/expire-data/

15、_id索引無法刪除

參考:《MongoDB——The Definitive Guide 2nd Edition》 page114

16、paddingFactor是什么?

它是存儲空間冗余系數(shù),1.0表示沒有冗余,1.5表示50%的冗余空間,有了冗余空間,可以讓后續(xù)引發(fā)size增加的操作更快(不會導致重新分配磁盤空間和文檔遷移),一般是在1到4之間。可以通過db.collection.stats()看到collection的該值“paddingFactor”。
該值是MongoDB自己處理的,使用者無法設置paddingFactor。我們可以在compact的時候?qū)σ呀?jīng)有的文檔指定該值,但這個paddingFactor值不影響后續(xù)新插入的文檔。
repairDatabase跟compact類似,也能移除冗余減少存儲空間,但冗余空間少了會導致后續(xù)增加文檔size的update操作變慢。
雖然我們無法設置paddingFactor,但是可以使用usePowerOf2Sizes保證分配的空間是2的倍數(shù),這樣也可以起到作用(MongoDB2.6版本起默認啟用usePowerOf2Size)。
或者手動實現(xiàn)padding:在插入文檔的時候先用默認字符占用一塊空間,等到真實數(shù)據(jù)寫入時,再unset掉它。

參考:
http://docs.mongodb.org/v2.4/core/record-padding/
http://docs.mongodb.org/v2.4/faq/developers/#faq-developers-manual-padding

17、usePowerOf2Size是什么

這是為更有效的復用磁盤空間而設置的參數(shù):分配的磁盤空間是2的倍數(shù),如果超過了4MB,則是距離計算值最近的且大于它的完整MB數(shù)。
可以通過db.collections.stats()看到該值“userFlags”。
MongoDB2.6之后默認開啟usePowerOf2Size參數(shù)
使用后的效果可以看這里的PPT:http://www.slideshare.net/mongodb/use-powerof2sizes-27300759

18、aggregate pipeline 指定運算完成輸出文檔跟MapReduce相比有不足

(基于MongoDB2.6版本)MapReduce可以指定輸出到特定的db.collection中,例如:out_put = bson.SON([("replace", "collection_name" ), ("db", "xx_db")])
aggregate pipeline只能指定collection名字,也就意味著數(shù)據(jù)只能寫入到本db,同時結(jié)果不能寫入到capped collection、shard collection中。
相比之下,aggregate pipeline限制是比較多的,如果我們需要把結(jié)果放到某個DB下,則需要再做一次遷移:
db.runCommand({renameCollection:"sourcedb.mycol",to:"targetdb.mycol"})
但是!!上面的這條命令要求在admin下執(zhí)行,且只能遷移往同shard下的DB,且被遷移的collection不能是shard的。
附錯誤碼信息:
https://github.com/mongodb/mongo/blob/master/src/mongo/s/commands_public.cpp#L778
uassert(13140, "Don't recognize source or target DB", confFrom confTo);
uassert(13138, "You can't rename a sharded collection", !confFrom->isSharded(fullnsFrom));
uassert(13139, "You can't rename to a sharded collection", !confTo->isSharded(fullnsTo));
uassert(13137, "Source and destination collections must be on same shard", shardFrom == shardTo);
參考:http://docs.mongodb.org/manual/reference/method/db.collection.mapReduce/#mapreduce-out-mtd

19、殺掉MongoD進程的幾種方式

1)進入到MongoD的命令行模式執(zhí)行shutdown,
eg: 
$ mongo --port 10001
> use admin
> db.shutdownServer()
2)1方式的簡化:
eg:mongo admin --port 10001 --eval "db.shutdownServer()"
3)使用MongoD命令行關閉,需要指定db路徑:
mongod --dbpath ./data/db --shutdown

20、集群的shard key慎重采用hash

如果你的日志是有日期屬性的,那么shard key不要使用hash,否則刪除過期日志時無法成塊刪除;在更新日志的時候,也不能利用局部性原理,查找、更新、插入數(shù)據(jù)都會因此而變慢。一般來說,hash id應付小數(shù)據(jù)量時壓力不大,但在數(shù)據(jù)量較大(熱數(shù)據(jù)大于可用內(nèi)存容量)時,CRUD性能極差,且會放大碎片對性能的影響:數(shù)據(jù)非常分散,當有過期日志被刪除后,這些刪除后的空間成為碎片,可能會因為磁盤預讀策略被加載到內(nèi)存中。另外,采用hash shard key還會浪費掉一個索引,浪費不少空間。

21、副本數(shù)也不用太多

如果你的副本數(shù)量超過了12個(MongoDB3.0.0超過了50個),那么就要選擇使用 master-slave ,但這樣會失去故障自恢復功能,主節(jié)點故障時,需要手動去切換到無故障節(jié)點。

22、mongos的config server配置信息中不要使用localhost、127.0.0.1

啟動mongos時,config server的配置信息不得使用localhost、127.0.0.1,否則添加其它機器的shard時,會出現(xiàn)錯誤提示:
"can't use localhost as a shard since all shards need to communicate. either use all shards and configdbs in localhost or all in actual IPs host: xxxxx isLocalHost"

以新的config server啟動mongos,也需要重啟config server,否則會有錯誤提示:
“could not verify config servers were active and reachable before write”

如果改完后面又出現(xiàn) “mongos specified a different config database string”  錯誤,那么還需要重啟mongod,

修改了config server 幾乎是要全部實例重啟。另外,在配置replica set時也不得使用localhost、127.0.0.1。
參考:http://stackoverflow.com/questions/21226255/where-is-the-mongos-config-database-string-being-stored

23、shard key的選擇跟update性能緊密關聯(lián)

分布式MongoDB,shard key的選擇跟update性能,甚至是update可用性有很大關系,需要注意。
1、在對文檔個別字段update時,如果query部分沒有帶上shard key,性能會很差,因為mongos需要把這條update語句派發(fā)給所有的shard 實例。
2、當update 的upsert參數(shù)為true時,query部分必須帶上 shard key,否則語句執(zhí)行出錯,例子:
mongos> db.test.update({"_id":".7269993106A92327A89ABCD70D46AD5"}, {"$set":{"P": "aaa"}, "$setOnInsert":{"TEST":"a"}}, true)
WriteResult({
"nMatched" : 0,
"nUpserted" : 0,
"nModified" : 0,
"writeError" : {
"code" : 61,
"errmsg" : "upsert { q: { _id: \".7269993106A92327A89ABCD70D46AD5\" }, u: { $set: { P: "aaa" }, $setOnInsert: { TEST: \"a\" } }, multi: false, upsert: true } does not contain shard key for pattern { _: 1.0, B: 1.0 }"
}
})
這是因為如果沒有shard key,mongos既不能在所有shard實例上執(zhí)行這條語句(可能會導致每個shard都插入數(shù)據(jù)),也無法選擇在某個shard上執(zhí)行這條語句,于是出錯了。
另外,需要特別注意,如果使用pymongo引擎,它不會告訴你出錯了,只是函數(shù)調(diào)用陷入不返回,在shell下執(zhí)行才能看到錯誤信息。

附:
以下英文部分來自:https://jira.mongodb.org/browse/SERVER-13010
It's actually not clear to me that this is something we can support - problem is this:
> db.coll.update({ _id : 1 }, { }, true);
> db.coll.find()
{ "_id" : ObjectId("53176700a2bc4d46c176f14a") }
Upserts generate new _ids in response to this operation, and therefore we can't actually target this correctly in a sharded environment. The shard on which we need to perform the query may not be the shard on which the new _id is placed.
意思是說,upsert產(chǎn)生了新的_id,_id就是shard key,但是如果query里沒有shard key,它們不知道要到哪個shard上執(zhí)行這個命令,upsert產(chǎn)生的shard key可能并不是執(zhí)行這條命令的shard的。
另外,如果_id不是shard key我們的例子也是不能成功的,因為沒有shard key,這條upsert要在哪個shard上執(zhí)行呢?不能像普通update那樣給所有的shard去做,否則可能導致插入多條。
參考:
https://jira.mongodb.org/browse/SERVER-13010
http://docs.mongodb.org/manual/core/sharding-shard-key/
http://stackoverflow.com/questions/17190246/which-of-the-following-statements-are-true-about-choosing-and-using-a-shard-key

24、通過repairDatabase提高性能

從db.stats()中可以看到幾個跟碎片相關的關鍵字段,dataSize,表示數(shù)據(jù)的大小,它包含了padding的空間;storageSize,表示這些數(shù)據(jù)存儲占用的空間,包含了dataSize和被刪除數(shù)據(jù)所占空間,可以認為storageSize/dataSize就是磁盤碎片比例,當刪除、update文檔比較多后,它會變大,考慮做repairDatabase,以減少碎片讓數(shù)據(jù)更緊湊,在實踐中,這對提高CURD性能極其有用。repairDatabase時需要注意:它是把數(shù)據(jù)拷貝到新的地方,然后再做處理,所以repair之前在DB目錄所在磁盤需要預留一倍的空閑磁盤空間,如果你發(fā)現(xiàn)磁盤空間不足,可以停止服務,然后增加一塊新磁盤,再執(zhí)行實例級別的repair,并指定--repairpath為新磁盤路徑,eg:mongod --dbpath /path/to/corrupt/data --repair --repairpath /media/external-hd/data/db,實例的數(shù)據(jù)會拷貝到/media/external-hd/data/db上做處理。

參考:《MongoDB——The Definitive Guide 2nd Edition》page325

25、索引字段的長度不能大于1024字節(jié)

索引字段的長度不能大于1024字節(jié),否則shell下會有插入錯誤提示:"errmsg" : "insertDocument :: caused by :: 17280 Btree::insert: key too large to index”。
使用pymongo的“continue_on_error”參數(shù),不會發(fā)出錯誤提示,要注意。
參考:http://docs.mongodb.org/manual/reference/limits/#Index-Key-Limit

26、修改索引的expireAfterSeconds之后,負載均衡失敗

修改索引的expireAfterSeconds之后,負載均衡失敗,出現(xiàn)錯誤提示“2015-06-05T09:59:49.056+0800 [migrateThread] warning: failed to create index before migrating data.  idx: { v: 1, key: { _: -1 }, name: "__-1", ns: "cswuyg_test.cswuyg_test", expireAfterSeconds: 5227200 } error: IndexOptionsConflict Index with name: __-1 already exists with different options
檢查發(fā)生moveChunk的兩個shard,并沒有發(fā)現(xiàn)不一致,懷疑存在緩存,重啟所有shard解決。

27、config DB無法寫入

因config DB無法修改,只可讀,導致drop、enablesharding失敗:
config server 相關日志:2015-06-11T16:51:19.078+0800 [replmaster] local.oplog.$main Assertion failure isOk() src/mongo/db/storage/extent.h 80
mongos 相關日志: [LockPinger] warning: pinging failed for distributed lock pinger 'xxx:1234/xxx:1235:1433993544:1804289383'. : : caused by :: isOk()
這是同事遇到的問題,不確定是什么操作引起的。重啟、configdb做repair均無法解決。
最后通過dump、restore解決:(1)把舊configdb dump出來;(2)restore到新的configure server;(3)mongos采用新的configure server;(4)重啟全部mongod。

28、sort()方法的size限制

當我對一個沒有建索引的字段做find,然后做sort的時候,可能觸發(fā)sort的size的32MB限制,例如:

cswuyg> db.stotal.find({}).sort({'type':-1})
Error: error: {
    "$err" : "Executor error: Overflow sort stage buffered data usage of 33554493 bytes exceeds internal limit of 33554432 bytes",
    "code" : 17144
}

有兩種解決方法:
解決方法一:對需要排序的字段建索引 db.stotal.ensureIndex({'type': -1})
解決方法二:修改默認配置,把sort時可以用的內(nèi)存設置大點:cswuyg> db.adminCommand({setParameter:1, internalQueryExecMaxBlockingSortBytes:335544320})
參考:http://askubuntu.com/questions/501937/how-to-increase-buffered-data-limit
這兩種解決方法各有利弊:(1)增加了索引會導致數(shù)據(jù)寫入變慢,存儲占用變多;(2)不建索引修改默認配置,會導致sort的時候占用更多的內(nèi)存。

您可能感興趣的文章:
  • Mongodb啟動命令參數(shù)中文說明
  • Mongodb 啟動命令mongod參數(shù)說明(中文翻譯)
  • 解析PHP中常見的mongodb查詢操作
  • Mongodb常見錯誤與解決方法小結(jié)(Mongodb中經(jīng)常出現(xiàn)的錯誤)
  • mongodb 常見問題處理方法收集
  • 關于Mongodb參數(shù)說明與常見錯誤處理的總結(jié)

標簽:自貢 玉林 雞西 興安盟 泰安 廈門 遼陽 無錫

巨人網(wǎng)絡通訊聲明:本文標題《MongoDB使用小結(jié):一些不常見的經(jīng)驗分享》,本文關鍵詞  MongoDB,使用,小結(jié),一些,不常見,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡,涉及言論、版權(quán)與本站無關。
  • 相關文章
  • 下面列出與本文章《MongoDB使用小結(jié):一些不常見的經(jīng)驗分享》相關的同類信息!
  • 本頁收集關于MongoDB使用小結(jié):一些不常見的經(jīng)驗分享的相關信息資訊供網(wǎng)民參考!
  • 推薦文章