方法 | 描述 |
---|---|
threading.Lock() | 返回一個同步鎖對象 |
lockObject.acquire(blocking=True, timeout=1) | 上鎖,當一個線程在執行被上鎖代碼塊時,將不允許切換到其他線程運行,默認鎖失效時間為1秒 |
lockObject.release() | 解鎖,當一個線程在執行未被上鎖代碼塊時,將允許系統根據策略自行切換到其他線程中運行 |
lockObject.locaked() | 判斷該鎖對象是否處于上鎖狀態,返回一個布爾值 |
同步鎖一次只能放行一個線程,一個被加鎖的線程在運行時不會將執行權交出去,只有當該線程被解鎖時才會將執行權通過系統調度交由其他線程。
如下所示,使用同步鎖解決最上面的問題:
import threading num = 0 def add(): lock.acquire() global num for i in range(10_000_000): num += 1 lock.release() def sub(): lock.acquire() global num for i in range(10_000_000): num -= 1 lock.release() if __name__ == "__main__": lock = threading.Lock() subThread01 = threading.Thread(target=add) subThread02 = threading.Thread(target=sub) subThread01.start() subThread02.start() subThread01.join() subThread02.join() print("num result : %s" % num) # 結果三次采集 # num result : 0 # num result : 0 # num result : 0
這樣這個代碼就完全變成了串行的狀態,對于這種計算密集型I/O業務來說,還不如直接使用串行化單線程執行來得快,所以這個例子僅作為一個示例,不能概述鎖真正的用途。
對于同步鎖來說,一次acquire()必須對應一次release(),不能出現連續重復使用多次acquire()后再重復使用多次release()的操作,這樣會引起死鎖造成程序的阻塞,完全不動了,如下所示:
import threading num = 0 def add(): lock.acquire() # 上鎖 lock.acquire() # 死鎖 # 不執行 global num for i in range(10_000_000): num += 1 lock.release() lock.release() def sub(): lock.acquire() # 上鎖 lock.acquire() # 死鎖 # 不執行 global num for i in range(10_000_000): num -= 1 lock.release() lock.release() if __name__ == "__main__": lock = threading.Lock() subThread01 = threading.Thread(target=add) subThread02 = threading.Thread(target=sub) subThread01.start() subThread02.start() subThread01.join() subThread02.join() print("num result : %s" % num)
由于threading.Lock()對象中實現了__enter__()與__exit__()方法,故我們可以使用with語句進行上下文管理形式的加鎖解鎖操作:
import threading num = 0 def add(): with lock: # 自動加鎖 global num for i in range(10_000_000): num += 1 # 自動解鎖 def sub(): with lock: # 自動加鎖 global num for i in range(10_000_000): num -= 1 # 自動解鎖 if __name__ == "__main__": lock = threading.Lock() subThread01 = threading.Thread(target=add) subThread02 = threading.Thread(target=sub) subThread01.start() subThread02.start() subThread01.join() subThread02.join() print("num result : %s" % num) # 結果三次采集 # num result : 0 # num result : 0 # num result : 0
遞歸鎖是同步鎖的一個升級版本,在同步鎖的基礎上可以做到連續重復使用多次acquire()后再重復使用多次release()的操作,但是一定要注意加鎖次數和解鎖次數必須一致,否則也將引發死鎖現象。
下面是threading模塊與遞歸鎖提供的相關方法:
方法 | 描述 |
---|---|
threading.RLock() | 返回一個遞歸鎖對象 |
lockObject.acquire(blocking=True, timeout=1) | 上鎖,當一個線程在執行被上鎖代碼塊時,將不允許切換到其他線程運行,默認鎖失效時間為1秒 |
lockObject.release() | 解鎖,當一個線程在執行未被上鎖代碼塊時,將允許系統根據策略自行切換到其他線程中運行 |
lockObject.locaked() | 判斷該鎖對象是否處于上鎖狀態,返回一個布爾值 |
以下是遞歸鎖的簡單使用,下面這段操作如果使用同步鎖則會發生死鎖現象,但是遞歸鎖不會:
import threading num = 0 def add(): lock.acquire() lock.acquire() global num for i in range(10_000_000): num += 1 lock.release() lock.release() def sub(): lock.acquire() lock.acquire() global num for i in range(10_000_000): num -= 1 lock.release() lock.release() if __name__ == "__main__": lock = threading.RLock() subThread01 = threading.Thread(target=add) subThread02 = threading.Thread(target=sub) subThread01.start() subThread02.start() subThread01.join() subThread02.join() print("num result : %s" % num) # 結果三次采集 # num result : 0 # num result : 0 # num result : 0
由于threading.RLock()對象中實現了__enter__()與__exit__()方法,故我們可以使用with語句進行上下文管理形式的加鎖解鎖操作:
import threading num = 0 def add(): with lock: # 自動加鎖 global num for i in range(10_000_000): num += 1 # 自動解鎖 def sub(): with lock: # 自動加鎖 global num for i in range(10_000_000): num -= 1 # 自動解鎖 if __name__ == "__main__": lock = threading.RLock() subThread01 = threading.Thread(target=add) subThread02 = threading.Thread(target=sub) subThread01.start() subThread02.start() subThread01.join() subThread02.join() print("num result : %s" % num) # 結果三次采集 # num result : 0 # num result : 0 # num result : 0
條件鎖是在遞歸鎖的基礎上增加了能夠暫停線程運行的功能。并且我們可以使用wait()與notify()來控制線程執行的個數。
注意:條件鎖可以自由設定一次放行幾個線程。
下面是threading模塊與條件鎖提供的相關方法:
方法 | 描述 |
---|---|
threading.Condition() | 返回一個條件鎖對象 |
lockObject.acquire(blocking=True, timeout=1) | 上鎖,當一個線程在執行被上鎖代碼塊時,將不允許切換到其他線程運行,默認鎖失效時間為1秒 |
lockObject.release() | 解鎖,當一個線程在執行未被上鎖代碼塊時,將允許系統根據策略自行切換到其他線程中運行 |
lockObject.wait(timeout=None) | 將當前線程設置為“等待”狀態,只有該線程接到“通知”或者超時時間到期之后才會繼續運行,在“等待”狀態下的線程將允許系統根據策略自行切換到其他線程中運行 |
lockObject.wait_for(predicate, timeout=None) | 將當前線程設置為“等待”狀態,只有該線程的predicate返回一個True或者超時時間到期之后才會繼續運行,在“等待”狀態下的線程將允許系統根據策略自行切換到其他線程中運行。注意:predicate參數應當傳入一個可調用對象,且返回結果為bool類型 |
lockObject.notify(n=1) | 通知一個當前狀態為“等待”的線程繼續運行,也可以通過參數n通知多個 |
lockObject.notify_all() | 通知所有當前狀態為“等待”的線程繼續運行 |
下面這個案例會啟動10個子線程,并且會立即將10個子線程設置為等待狀態。
然后我們可以發送一個或者多個通知,來恢復被等待的子線程繼續運行:
import threading currentRunThreadNumber = 0 maxSubThreadNumber = 10 def task(): global currentRunThreadNumber thName = threading.currentThread().name condLock.acquire() # 上鎖 print("start and wait run thread : %s" % thName) condLock.wait() # 暫停線程運行、等待喚醒 currentRunThreadNumber += 1 print("carry on run thread : %s" % thName) condLock.release() # 解鎖 if __name__ == "__main__": condLock = threading.Condition() for i in range(maxSubThreadNumber): subThreadIns = threading.Thread(target=task) subThreadIns.start() while currentRunThreadNumber maxSubThreadNumber: notifyNumber = int( input("Please enter the number of threads that need to be notified to run:")) condLock.acquire() condLock.notify(notifyNumber) # 放行 condLock.release() print("main thread run end") # 先啟動10個子線程,然后這些子線程會全部變為等待狀態 # start and wait run thread : Thread-1 # start and wait run thread : Thread-2 # start and wait run thread : Thread-3 # start and wait run thread : Thread-4 # start and wait run thread : Thread-5 # start and wait run thread : Thread-6 # start and wait run thread : Thread-7 # start and wait run thread : Thread-8 # start and wait run thread : Thread-9 # start and wait run thread : Thread-10 # 批量發送通知,放行特定數量的子線程繼續運行 # Please enter the number of threads that need to be notified to run:5 # 放行5個 # carry on run thread : Thread-4 # carry on run thread : Thread-3 # carry on run thread : Thread-1 # carry on run thread : Thread-2 # carry on run thread : Thread-5 # Please enter the number of threads that need to be notified to run:5 # 放行5個 # carry on run thread : Thread-8 # carry on run thread : Thread-10 # carry on run thread : Thread-6 # carry on run thread : Thread-9 # carry on run thread : Thread-7 # Please enter the number of threads that need to be notified to run:1 # main thread run end
由于threading.Condition()對象中實現了__enter__()與__exit__()方法,故我們可以使用with語句進行上下文管理形式的加鎖解鎖操作:
import threading currentRunThreadNumber = 0 maxSubThreadNumber = 10 def task(): global currentRunThreadNumber thName = threading.currentThread().name with condLock: print("start and wait run thread : %s" % thName) condLock.wait() # 暫停線程運行、等待喚醒 currentRunThreadNumber += 1 print("carry on run thread : %s" % thName) if __name__ == "__main__": condLock = threading.Condition() for i in range(maxSubThreadNumber): subThreadIns = threading.Thread(target=task) subThreadIns.start() while currentRunThreadNumber maxSubThreadNumber: notifyNumber = int( input("Please enter the number of threads that need to be notified to run:")) with condLock: condLock.notify(notifyNumber) # 放行 print("main thread run end")
事件鎖是基于條件鎖來做的,它與條件鎖的區別在于一次只能放行全部,不能放行任意個數量的子線程繼續運行。
我們可以將事件鎖看為紅綠燈,當紅燈時所有子線程都暫停運行,并進入“等待”狀態,當綠燈時所有子線程都恢復“運行”。
下面是threading模塊與事件鎖提供的相關方法:
方法 | 描述 |
---|---|
threading.Event() | 返回一個事件鎖對象 |
lockObject.clear() | 將事件鎖設為紅燈狀態,即所有線程暫停運行 |
lockObject.is_set() | 用來判斷當前事件鎖狀態,紅燈為False,綠燈為True |
lockObject.set() | 將事件鎖設為綠燈狀態,即所有線程恢復運行 |
lockObject.wait(timeout=None) | 將當前線程設置為“等待”狀態,只有該線程接到“綠燈通知”或者超時時間到期之后才會繼續運行,在“等待”狀態下的線程將允許系統根據策略自行切換到其他線程中運行 |
事件鎖不能利用with語句來進行使用,只能按照常規方式。
如下所示,我們來模擬線程和紅綠燈的操作,紅燈停,綠燈行:
import threading maxSubThreadNumber = 3 def task(): thName = threading.currentThread().name print("start and wait run thread : %s" % thName) eventLock.wait() # 暫停運行,等待綠燈 print("green light, %s carry on run" % thName) print("red light, %s stop run" % thName) eventLock.wait() # 暫停運行,等待綠燈 print("green light, %s carry on run" % thName) print("sub thread %s run end" % thName) if __name__ == "__main__": eventLock = threading.Event() for i in range(maxSubThreadNumber): subThreadIns = threading.Thread(target=task) subThreadIns.start() eventLock.set() # 設置為綠燈 eventLock.clear() # 設置為紅燈 eventLock.set() # 設置為綠燈 # start and wait run thread : Thread-1 # start and wait run thread : Thread-2 # start and wait run thread : Thread-3 # green light, Thread-1 carry on run # red light, Thread-1 stop run # green light, Thread-1 carry on run # sub thread Thread-1 run end # green light, Thread-3 carry on run # red light, Thread-3 stop run # green light, Thread-3 carry on run # sub thread Thread-3 run end # green light, Thread-2 carry on run # red light, Thread-2 stop run # green light, Thread-2 carry on run # sub thread Thread-2 run end
基本介紹
信號量鎖也是根據條件鎖來做的,它與條件鎖和事件鎖的區別如下:
下面是threading模塊與信號量鎖提供的相關方法:
方法 | 描述 |
---|---|
threading.Semaphore() | 返回一個信號量鎖對象 |
lockObject.acquire(blocking=True, timeout=1) | 上鎖,當一個線程在執行被上鎖代碼塊時,將不允許切換到其他線程運行,默認鎖失效時間為1秒 |
lockObject.release() | 解鎖,當一個線程在執行未被上鎖代碼塊時,將允許系統根據策略自行切換到其他線程中運行 |
以下是使用示例,你可以將它當做一段限寬的路段,每次只能放行相同數量的線程:
import threading import time maxSubThreadNumber = 6 def task(): thName = threading.currentThread().name semaLock.acquire() print("run sub thread %s" % thName) time.sleep(3) semaLock.release() if __name__ == "__main__": # 每次只能放行2個 semaLock = threading.Semaphore(2) for i in range(maxSubThreadNumber): subThreadIns = threading.Thread(target=task) subThreadIns.start() # run sub thread Thread-1 # run sub thread Thread-2 # run sub thread Thread-3 # run sub thread Thread-4 # run sub thread Thread-6 # run sub thread Thread-5
由于threading.Semaphore()對象中實現了__enter__()與__exit__()方法,故我們可以使用with語句進行上下文管理形式的加鎖解鎖操作:
import threading import time maxSubThreadNumber = 6 def task(): thName = threading.currentThread().name with semaLock: print("run sub thread %s" % thName) time.sleep(3) if __name__ == "__main__": semaLock = threading.Semaphore(2) for i in range(maxSubThreadNumber): subThreadIns = threading.Thread(target=task) subThreadIns.start()
上面5種鎖可以說都是基于同步鎖來做的,這些你都可以從源碼中找到答案。
首先來看RLock遞歸鎖,遞歸鎖的實現非常簡單,它的內部會維護著一個計數器,當計數器不為0的時候該線程不能被I/O操作和時間輪詢機制切換。但是當計數器為0的時候便不會如此了:
def __init__(self): self._block = _allocate_lock() self._owner = None self._count = 0 # 計數器
而Condition條件鎖的內部其實是有兩把鎖的,一把底層鎖(同步鎖)一把高級鎖(遞歸鎖)。
低層鎖的解鎖方式有兩種,使用wait()方法會暫時解開底層鎖同時加上一把高級鎖,只有當接收到別的線程里的notfiy()后才會解開高級鎖和重新上鎖低層鎖,也就是說條件鎖底層是根據同步鎖和遞歸鎖的不斷切換來進行實現的:
def __init__(self, lock=None): if lock is None: lock = RLock() # 可以看到條件鎖的內部是基于遞歸鎖,而遞歸鎖又是基于同步鎖來做的 self._lock = lock self.acquire = lock.acquire self.release = lock.release try: self._release_save = lock._release_save except AttributeError: pass try: self._acquire_restore = lock._acquire_restore except AttributeError: pass try: self._is_owned = lock._is_owned except AttributeError: pass self._waiters = _deque()
Event事件鎖內部是基于條件鎖來做的:
class Event: def __init__(self): self._cond = Condition(Lock()) # 實例化出了一個條件鎖。 self._flag = False def _reset_internal_locks(self): # private! called by Thread._reset_internal_locks by _after_fork() self._cond.__init__(Lock()) def is_set(self): """Return true if and only if the internal flag is true.""" return self._flag isSet = is_set
Semaphore信號量鎖內部也是基于條件鎖來做的:
class Semaphore: def __init__(self, value=1): if value 0: raise ValueError("semaphore initial value must be >= 0") self._cond = Condition(Lock()) # 可以看到,這里是實例化出了一個條件鎖 self._value = value
需求:一個空列表,兩個線程輪番往里面加值(一個加偶數,一個加奇數),最終讓該列表中的值為 1 - 100 ,且是有序排列的。
import threading lst = [] def even(): """加偶數""" with condLock: for i in range(2, 101, 2): # 判斷當前列表的長度處于2是否能處盡 # 如果能處盡則代表需要添加奇數 # 否則就添加偶數 if len(lst) % 2 != 0: # 添偶數 lst.append(i) # 先添加值 condLock.notify() # 告訴另一個線程,你可以加奇數了,但是這里不會立即交出執行權 condLock.wait() # 交出執行權,并等待另一個線程通知加偶數 else: # 添奇數 condLock.wait() # 交出執行權,等待另一個線程通知加偶數 lst.append(i) condLock.notify() condLock.notify() def odd(): """加奇數""" with condLock: for i in range(1, 101, 2): if len(lst) % 2 == 0: lst.append(i) condLock.notify() condLock.wait() condLock.notify() if __name__ == "__main__": condLock = threading.Condition() addEvenTask = threading.Thread(target=even) addOddTask = threading.Thread(target=odd) addEvenTask.start() addOddTask.start() addEvenTask.join() addOddTask.join() print(lst)
有2個任務線程來扮演李白和杜甫,如何讓他們一人一句進行對答?文本如下:
杜甫:老李啊,來喝酒!
李白:老杜啊,不喝了我喝不下了!
杜甫:老李啊,再來一壺?
杜甫:...老李?
李白:呼呼呼...睡著了..
代碼如下:
import threading def libai(): event.wait() print("李白:老杜啊,不喝了我喝不下了!") event.set() event.clear() event.wait() print("李白:呼呼呼...睡著了..") def dufu(): print("杜甫:老李啊,來喝酒!") event.set() event.clear() event.wait() print("杜甫:老李啊,再來一壺?") print("杜甫:...老李?") event.set() if __name__ == '__main__': event = threading.Event() t1 = threading.Thread(target=libai) t2 = threading.Thread(target=dufu) t1.start() t2.start() t1.join() t2.join()
到此這篇關于Python3中最常用的5種線程鎖的文章就介紹到這了,更多相關Python3常用線程鎖內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!