隨機負載
隨機挑選目標服務器
package load_balance
import (
"errors"
"math/rand"
)
//隨機負載均衡
type RandomBalance struct {
curIndex int
rss []string
}
func (r *RandomBalance) Add(params ...string) error {
if len(params) == 0 {
return errors.New("params len 1 at least")
}
addr := params[0]
r.rss = append(r.rss, addr)
return nil
}
func (r *RandomBalance) Next() string {
if len(r.rss) == 0 {
return ""
}
r.curIndex = rand.Intn(len(r.rss))
return r.rss[r.curIndex]
}
func (r *RandomBalance) Get(string) (string, error) {
return r.Next(), nil
}
輪詢負載
服務器依次輪詢
package load_balance
import "errors"
//輪詢負載均衡
type RoundRobinBalance struct {
curIndex int
rss []string
}
func (r *RoundRobinBalance) Add(params ...string) error {
if len(params) == 0 {
return errors.New("params len 1 at least")
}
addr := params[0]
r.rss = append(r.rss, addr)
return nil
}
func (r *RoundRobinBalance) Next() string {
if len(r.rss) == 0 {
return ""
}
lens := len(r.rss)
if r.curIndex >= lens {
r.curIndex = 0
}
curAddr := r.rss[r.curIndex]
r.curIndex = (r.curIndex + 1) % lens
return curAddr
}
func (r *RoundRobinBalance) Get(string) (string, error) {
return r.Next(), nil
}
加權輪詢負載
給目標設置訪問權重,按照權重輪詢
package load_balance
import (
"errors"
"strconv"
)
type WeightRoundRobinBalance struct {
curIndex int
rss []*WeightNode
rsw []int
}
type WeightNode struct {
addr string
Weight int //初始化時對節點約定的權重
currentWeight int //節點臨時權重,每輪都會變化
effectiveWeight int //有效權重, 默認與weight相同 , totalWeight = sum(effectiveWeight) //出現故障就-1
}
//1, currentWeight = currentWeight + effectiveWeight
//2, 選中最大的currentWeight節點為選中節點
//3, currentWeight = currentWeight - totalWeight
func (r *WeightRoundRobinBalance) Add(params ...string) error {
if len(params) != 2 {
return errors.New("params len need 2")
}
parInt, err := strconv.ParseInt(params[1], 10, 64)
if err != nil {
return err
}
node := WeightNode{
addr: params[0],
Weight: int(parInt),
}
node.effectiveWeight = node.Weight
r.rss = append(r.rss, node)
return nil
}
func (r *WeightRoundRobinBalance) Next() string {
var best *WeightNode
total := 0
for i := 0; i len(r.rss); i++ {
w := r.rss[i]
//1 計算所有有效權重
total += w.effectiveWeight
//2 修改當前節點臨時權重
w.currentWeight += w.effectiveWeight
//3 有效權重默認與權重相同,通訊異常時-1, 通訊成功+1,直到恢復到weight大小
if w.effectiveWeight w.Weight {
w.effectiveWeight++
}
//4 選中最大臨時權重節點
if best == nil || w.currentWeight > best.currentWeight {
best = w
}
}
if best == nil {
return ""
}
//5 變更臨時權重為 臨時權重-有效權重之和
best.currentWeight -= total
return best.addr
}
func (r *WeightRoundRobinBalance) Get(string) (string, error) {
return r.Next(), nil
}
func (r *WeightRoundRobinBalance) Update() {
}
一致性hash
請求固定的URL訪問指定的IP
package load_balance
import (
"errors"
"hash/crc32"
"sort"
"strconv"
"sync"
)
//1 單調性(唯一) 2平衡性 (數據 目標元素均衡) 3分散性(散列)
type Hash func(data []byte) uint32
type UInt32Slice []uint32
func (s UInt32Slice) Len() int {
return len(s)
}
func (s UInt32Slice) Less(i, j int) bool {
return s[i] s[j]
}
func (s UInt32Slice) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
type ConsistentHashBalance struct {
mux sync.RWMutex
hash Hash
replicas int //復制因子
keys UInt32Slice //已排序的節點hash切片
hashMap map[uint32]string //節點哈希和key的map, 鍵是hash值,值是節點key
}
func NewConsistentHashBalance(replicas int, fn Hash) *ConsistentHashBalance {
m := ConsistentHashBalance{
replicas: replicas,
hash: fn,
hashMap: make(map[uint32]string),
}
if m.hash == nil {
//最多32位,保證是一個2^32-1環
m.hash = crc32.ChecksumIEEE
}
return m
}
func (c *ConsistentHashBalance) IsEmpty() bool {
return len(c.keys) == 0
}
// Add 方法用來添加緩存節點,參數為節點key,比如使用IP
func (c *ConsistentHashBalance) Add(params ...string) error {
if len(params) == 0 {
return errors.New("param len 1 at least")
}
addr := params[0]
c.mux.Lock()
defer c.mux.Unlock()
// 結合復制因子計算所有虛擬節點的hash值,并存入m.keys中,同時在m.hashMap中保存哈希值和key的映射
for i := 0; i c.replicas; i++ {
hash := c.hash([]byte(strconv.Itoa(i) + addr))
c.keys = append(c.keys, hash)
c.hashMap[hash] = addr
}
// 對所有虛擬節點的哈希值進行排序,方便之后進行二分查找
sort.Sort(c.keys)
return nil
}
// Get 方法根據給定的對象獲取最靠近它的那個節點
func (c *ConsistentHashBalance) Get(key string) (string, error) {
if c.IsEmpty() {
return "", errors.New("node is empty")
}
hash := c.hash([]byte(key))
// 通過二分查找獲取最優節點,第一個"服務器hash"值大于"數據hash"值的就是最優"服務器節點"
idx := sort.Search(len(c.keys), func(i int) bool { return c.keys[i] >= hash })
// 如果查找結果 大于 服務器節點哈希數組的最大索引,表示此時該對象哈希值位于最后一個節點之后,那么放入第一個節點中
if idx == len(c.keys) {
idx = 0
}
c.mux.RLock()
defer c.mux.RUnlock()
return c.hashMap[c.keys[idx]], nil
}
封裝
定義LoadBalance接口
package load_balance
type LoadBalance interface {
Add(...string) error
Get(string)(string, error)
}
工廠方法
package load_balance
type LbType int
const (
LbRandom LbType = iota
LbRoundRobin
LbWeightRoundRobin
LbConsistentHash
)
func LoadBalanceFactory(lbType LbType) LoadBalance {
switch lbType {
case LbRandom:
return RandomBalance{}
case LbConsistentHash:
return NewConsistentHashBalance(10, nil)
case LbRoundRobin:
return RoundRobinBalance{}
case LbWeightRoundRobin:
return WeightRoundRobinBalance{}
default:
return RandomBalance{}
}
}
到此這篇關于Golang實現四種負載均衡的算法(隨機,輪詢等)的文章就介紹到這了,更多相關Golang 負載均衡內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:- golang grpc 負載均衡的方法
- 使用Golang實現加權負載均衡算法的實現代碼