目錄
- 一、介紹
- 二、Python如何創建線程
- 三、線程的用法
- 3.1 確定當前的線程
- 3.2 守護線程
- 3.3 控制資源訪問
一、介紹
線程是什么?線程有啥用?線程和進程的區別是什么?
線程是操作系統能夠進行運算調度的最小單位。被包含在進程中,是進程中的實際運作單位。一條線程指的是進程中一個單一順序的控制流,一個進程中可以并發多個線程,每條線程并行執行不同的任務。
二、Python如何創建線程
2.1 方法一:
創建Thread對象
步驟:
1.目標函數
2.實例化Thread對象
3.調用start()方法
import threading
# 目標函數1
def fun1(num):
for i in range(num):
print('線程1: 第%d次循環:' % i)
# 目標函數2
def fun2(lst):
for ele in lst:
print('線程2: lst列表中元素 %d' % ele)
def main():
num = 10
# 實例化Thread對象
# target參數一定為一個函數,且不帶括號
# args參數為元組類型,參數為一個時一定要加逗號
t1 = threading.Thread(target=fun1, args=(num,))
t2 = threading.Thread(target=fun2, args=([1, 2, 3, 4, 5],))
# 調用start方法
t1.start()
t2.start()
if __name__ == '__main__':
main()
2.2 方法二:
創建子類繼承threading.Thread類
import threading
import os
class Person(threading.Thread):
def run(self):
self.sing(5)
self.cook()
@staticmethod
def sing(num):
for i in range(num):
print('線程[%d]: The person sing %d song.' % (os.getpid(), i))
@staticmethod
def cook():
print('線程[%d]:The person has cooked breakfast.' % os.getpid())
def main():
p1 = Person()
p1.start()
p2 = Person()
p2.start()
if __name__ == '__main__':
main()
三、線程的用法
3.1 確定當前的線程
import threading
import time
import logging
def fun1():
print(threading.current_thread().getName(), 'starting')
time.sleep(0.2)
print(threading.current_thread().getName(), 'exiting')
def fun2():
# print(threading.current_thread().getName(), 'starting')
# time.sleep(0.3)
# print(threading.current_thread().getName(), 'exiting')
logging.debug('starting')
time.sleep(0.3)
logging.debug('exiting')
logging.basicConfig(
level=logging.DEBUG,
format='[%(levelname)s] (%(threadName)-10s) %(message)s'
)
def main():
t1 = threading.Thread(name='線程1', target=fun1)
t2 = threading.Thread(name='線程2', target=fun2)
t1.start()
t2.start()
if __name__ == '__main__':
main()
3.2 守護線程
區別
- 普通線程:主線程等待子線程關閉后關閉
- 守護線程:管你子線程關沒關,主線程到時間就關閉
守護線程如何搞
- 方法1:構造線程時傳入dameon=True
- 方法2:調用setDaemon()方法并提供參數True
import threading
import time
import logging
def daemon():
logging.debug('starting')
# 添加延時,此時主線程已經退出,exiting不會打印
time.sleep(0.2)
logging.debug('exiting')
def non_daemon():
logging.debug('starting')
logging.debug('exiting')
logging.basicConfig(
level=logging.DEBUG,
format='[%(levelname)s] (%(threadName)-10s) %(message)s'
)
def main():
# t1 = threading.Thread(name='線程1', target=daemon)
# t1.setDaemon(True)
t1 = threading.Thread(name='線程1', target=daemon, daemon=True)
t2 = threading.Thread(name='線程2', target=non_daemon)
t1.start()
t2.start()
# 等待守護線程完成工作需要調用join()方法,默認情況join會無限阻塞,可以傳入浮點值,表示超時時間
t1.join(0.2)
t2.join(0.1)
if __name__ == '__main__':
main()
3.3 控制資源訪問
目的:
Python線程中資源共享,如果不對資源加上互斥鎖,有可能導致數據不準確。
import threading
import time
g_num = 0
def fun1(num):
global g_num
for i in range(num):
g_num += 1
print('線程1 g_num = %d' % g_num)
def fun2(num):
global g_num
for i in range(num):
g_num += 1
print('線程2 g_num = %d' % g_num)
def main():
t1 = threading.Thread(target=fun1, args=(1000000,))
t2 = threading.Thread(target=fun1, args=(1000000,))
t1.start()
t2.start()
if __name__ == '__main__':
main()
time.sleep(1)
print('主線程 g_num = %d' % g_num)
互斥鎖
import threading
import time
g_num = 0
L = threading.Lock()
def fun1(num):
global g_num
L.acquire()
for i in range(num):
g_num += 1
L.release()
print('線程1 g_num = %d' % g_num)
def fun2(num):
global g_num
L.acquire()
for i in range(num):
g_num += 1
L.release()
print('線程2 g_num = %d' % g_num)
def main():
t1 = threading.Thread(target=fun1, args=(1000000,))
t2 = threading.Thread(target=fun1, args=(1000000,))
t1.start()
t2.start()
if __name__ == '__main__':
main()
time.sleep(1)
print('主線程 g_num = %d' % g_num)
互斥鎖引發的另一個問題:死鎖
死鎖產生的原理:

import threading
import time
g_num = 0
L1 = threading.Lock()
L2 = threading.Lock()
def fun1():
L1.acquire(timeout=5)
time.sleep(1)
L2.acquire()
print('產生死鎖,并不會打印信息')
L2.release()
L1.release()
def fun2():
L2.acquire(timeout=5)
time.sleep(1)
L1.acquire()
print('產生死鎖,并不會打印信息')
L1.release()
L2.release()
def main():
t1 = threading.Thread(target=fun1)
t2 = threading.Thread(target=fun2)
t1.start()
t2.start()
if __name__ == '__main__':
main()
time.sleep(1)
print('主線程 g_num = %d' % g_num)
如何避免產生死鎖:
鎖超時操作
import threading
import time
g_num = 0
L1 = threading.Lock()
L2 = threading.Lock()
def fun1():
L1.acquire()
time.sleep(1)
L2.acquire(timeout=5)
print('超時異常打印信息1')
L2.release()
L1.release()
def fun2():
L2.acquire()
time.sleep(1)
L1.acquire(timeout=5)
print('超時異常打印信息2')
L1.release()
L2.release()
def main():
t1 = threading.Thread(target=fun1)
t2 = threading.Thread(target=fun2)
t1.start()
t2.start()
if __name__ == '__main__':
main()
time.sleep(1)
print('主線程 g_num = %d' % g_num)
到此這篇關于Python多線程編程之threading模塊詳解的文章就介紹到這了,更多相關python threading模塊內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:- 分析Python感知線程狀態的解決方案之Event與信號量
- 像線程一樣管理進程的Python multiprocessing庫
- Python爬蟲之線程池的使用
- 深入理解python多線程編程
- Python一些線程的玩法總結